The purpose of this study is to develop a system that enables location finding of a small sound. The location finding of a small sound has some difficulties such as high computational costs or disturbances from the am...The purpose of this study is to develop a system that enables location finding of a small sound. The location finding of a small sound has some difficulties such as high computational costs or disturbances from the ambient noises and reflected waves. The proposed system is composed of a biologically-inspired system which uses a hearing mechanism based on the human ear and a mechanism for perceiving weak signals that uses stochastic resonance. The location finding mechanism in the proposed system is based on the time-lag detecting architecture. On the other hand, the stochastic resonance mechanism can pick up the small sound source in the ambient noises. Using this proposed system, we implemented the location finding of small sounds through numerical simulations and hardware experiments. Good results were obtained for the small sound source location finding.展开更多
Climate protection is a problem of sustaining a public resource. All countries of the world should take action to deal with climate change. However, such an action is actually a game process where each country chooses...Climate protection is a problem of sustaining a public resource. All countries of the world should take action to deal with climate change. However, such an action is actually a game process where each country chooses to cooperate or defect under constrained condition. Here we study the group behavior of countries in dealing with climate change. In our study, the countries of the world are considered as players who are distributed on an assumed spatial network. A new evolution rule is proposed to model the game process among the players. Our extensive experiments demonstrate that under constrained condition, the local psychology of players possibly results in the formation of local group. Some local and global oscillations can be found where part or all of the players change their choices periodically.展开更多
Multi-charged helium ion beam He2+ is useful for helium accelerator to obtain a higher energy with lower cost and for deuterium accelerator to avoid neutron activation during machine commissioning. An attempt to gene...Multi-charged helium ion beam He2+ is useful for helium accelerator to obtain a higher energy with lower cost and for deuterium accelerator to avoid neutron activation during machine commissioning. An attempt to generate milliampere multi-charged helium He2+ ion beam with a 2.45 GHz electron cyclotron resonance ion source (ECRIS) was tested recently. A design using a specfic permanent magnet 2.45 GHz ECRIS (PMECRIS) source (ERCIS) is reported and the He2~ beam production ability is described. With this source, we produced a total helium beam of 40 mA at 40 kV with 180 W of net microwave power and a gas flow of less than 0.5 seem. At steady state the He2+ beam intensity is 4.4 rnA, that being the fraction of multi-charged he- lium ion beam is at approximately 11%.展开更多
Cooling is very important for the safe operation of an electron cyclotron resonance ion source(ECRIS),especially when the window current density is very high(up to 11 A/mm2).We proposed an innovative cooling method us...Cooling is very important for the safe operation of an electron cyclotron resonance ion source(ECRIS),especially when the window current density is very high(up to 11 A/mm2).We proposed an innovative cooling method using evaporative cooling technology.A demonstration prototype was designed,built and tested.The on-site test results showed that the temperature of the solenoids and permanent magnets maintains well in the normal operational range of 14–18 GHz.A simple computational model was developed to predict the characteristics of the two-phase flow.The predicted temperatures agreed well with the on-site test data within 2 K.We also proposed useful design criteria.The successful operation of the system indicates the potential for broad application of evaporative cooling technology in situations in which the power intensity is very high.展开更多
Photocatalytic hydrogen production is considered a promising approach to generating clean sustainable energy.However,the conventional co-catalyst(e.g.,Pt)used in photocatalytic hydrogen production is high-cost and dif...Photocatalytic hydrogen production is considered a promising approach to generating clean sustainable energy.However,the conventional co-catalyst(e.g.,Pt)used in photocatalytic hydrogen production is high-cost and difficult to obtain.Here,we designed and prepared a ternary nanocomposite MXene@Au@Cd S,which can be used in the field of efficient and excellent photocatalytic hydrogen production.The MXene@Au@Cd S has a hydrogen production rate of 17,070.43μmol g^-1h^-1(tested for 2 h),which is 1.85 times that of pure Cd S nanomaterials.The improved hydrogen production performance of the MXene@Au@Cd S is attributed to:(i)MXene provides more active adsorption sites and reaction centers for Au and Cd S nanoparticles;(ii)the synergistic effect of Au’s strong surface plasmon resonance expands the optical response range of Cd S.Therefore,this work solves the problem of the solid connection between the surface functional groups of photocatalyst,and achieves rapid interface charge transfer and long-term stability during the hydrogen production.展开更多
文摘The purpose of this study is to develop a system that enables location finding of a small sound. The location finding of a small sound has some difficulties such as high computational costs or disturbances from the ambient noises and reflected waves. The proposed system is composed of a biologically-inspired system which uses a hearing mechanism based on the human ear and a mechanism for perceiving weak signals that uses stochastic resonance. The location finding mechanism in the proposed system is based on the time-lag detecting architecture. On the other hand, the stochastic resonance mechanism can pick up the small sound source in the ambient noises. Using this proposed system, we implemented the location finding of small sounds through numerical simulations and hardware experiments. Good results were obtained for the small sound source location finding.
基金Supported by the State Key Laboratory of Rail Traffic Control and Safety under Grant Nos.RCS2008ZZ001 and RCS2010ZZ001,Beijing Jiaotong University
文摘Climate protection is a problem of sustaining a public resource. All countries of the world should take action to deal with climate change. However, such an action is actually a game process where each country chooses to cooperate or defect under constrained condition. Here we study the group behavior of countries in dealing with climate change. In our study, the countries of the world are considered as players who are distributed on an assumed spatial network. A new evolution rule is proposed to model the game process among the players. Our extensive experiments demonstrate that under constrained condition, the local psychology of players possibly results in the formation of local group. Some local and global oscillations can be found where part or all of the players change their choices periodically.
基金supported by the National Natural Science Foundation of China(Grant Nos.11075008 and 11175009)
文摘Multi-charged helium ion beam He2+ is useful for helium accelerator to obtain a higher energy with lower cost and for deuterium accelerator to avoid neutron activation during machine commissioning. An attempt to generate milliampere multi-charged helium He2+ ion beam with a 2.45 GHz electron cyclotron resonance ion source (ECRIS) was tested recently. A design using a specfic permanent magnet 2.45 GHz ECRIS (PMECRIS) source (ERCIS) is reported and the He2~ beam production ability is described. With this source, we produced a total helium beam of 40 mA at 40 kV with 180 W of net microwave power and a gas flow of less than 0.5 seem. At steady state the He2+ beam intensity is 4.4 rnA, that being the fraction of multi-charged he- lium ion beam is at approximately 11%.
基金supported by the Open Research Project of the Major Science and Technology Infrastructure in the Chinese Academy of Sciences-Application of Evaporative Cooling Technology in the Field of Accelerator
文摘Cooling is very important for the safe operation of an electron cyclotron resonance ion source(ECRIS),especially when the window current density is very high(up to 11 A/mm2).We proposed an innovative cooling method using evaporative cooling technology.A demonstration prototype was designed,built and tested.The on-site test results showed that the temperature of the solenoids and permanent magnets maintains well in the normal operational range of 14–18 GHz.A simple computational model was developed to predict the characteristics of the two-phase flow.The predicted temperatures agreed well with the on-site test data within 2 K.We also proposed useful design criteria.The successful operation of the system indicates the potential for broad application of evaporative cooling technology in situations in which the power intensity is very high.
基金supported by the National Natural Science Foundation of China(21872119)the Talent Engineering Training Funding Project of Hebei Province(A201905004)the Research Program of the College Science and Technology of Hebei Province(ZD2018091)。
文摘Photocatalytic hydrogen production is considered a promising approach to generating clean sustainable energy.However,the conventional co-catalyst(e.g.,Pt)used in photocatalytic hydrogen production is high-cost and difficult to obtain.Here,we designed and prepared a ternary nanocomposite MXene@Au@Cd S,which can be used in the field of efficient and excellent photocatalytic hydrogen production.The MXene@Au@Cd S has a hydrogen production rate of 17,070.43μmol g^-1h^-1(tested for 2 h),which is 1.85 times that of pure Cd S nanomaterials.The improved hydrogen production performance of the MXene@Au@Cd S is attributed to:(i)MXene provides more active adsorption sites and reaction centers for Au and Cd S nanoparticles;(ii)the synergistic effect of Au’s strong surface plasmon resonance expands the optical response range of Cd S.Therefore,this work solves the problem of the solid connection between the surface functional groups of photocatalyst,and achieves rapid interface charge transfer and long-term stability during the hydrogen production.