Let G be a finite group with a non-central Sylow r-subgroup R, Z(G) the center of G, and N a normal subgroup of G. The purpose of this paper is to determine the structure of N under the hypotheses that N contains R ...Let G be a finite group with a non-central Sylow r-subgroup R, Z(G) the center of G, and N a normal subgroup of G. The purpose of this paper is to determine the structure of N under the hypotheses that N contains R and the G-conjugacy class size of every element of N is either i or m. Particularly, it is shown that N is Abelian if N ∩ Z(G)=1 and the G-conjugacy class size of every element of N is either 1 or m.展开更多
基金Supported by the National Natural Science Foundation of China(No.10801103)by the Natural Sciences Fund for Colleges and Universities in Jiangsu Province(No.08KJB110010)
基金supported by the National Natural Science Foundation of China (No. 10771132)SGRC (No.GZ 310)the Research Grant of Shanghai University and the Shanghai Leading Academic Discipline Project (No. J50101).
文摘Let G be a finite group with a non-central Sylow r-subgroup R, Z(G) the center of G, and N a normal subgroup of G. The purpose of this paper is to determine the structure of N under the hypotheses that N contains R and the G-conjugacy class size of every element of N is either i or m. Particularly, it is shown that N is Abelian if N ∩ Z(G)=1 and the G-conjugacy class size of every element of N is either 1 or m.