The detonation of an IED near a military vehicle induces different damage effects on the vehicle and its occupants. There are local effects from fragments and projectiles but there are also global effects from a momen...The detonation of an IED near a military vehicle induces different damage effects on the vehicle and its occupants. There are local effects from fragments and projectiles but there are also global effects from a momentum transfer on the complete vehicle structure and a subsequent dynamical motion of the vehicle with phenomena like overturning or vehicle displacement from the road.Questions like this can be answered with numerical finite-element simulations but there is also the need for engineering tools that allow a quick and nearly instantaneous simulation of these phenomena. The following work presents an approach for a fast analysis of global IED effects on vehicles. The physical modelling is based on analytical formula and empirical data that describe the momentum transfer of a detonation on a nearby structure. This momentum is the initial condition for the calculation of the following vehicle motion and the simulation of vehicle dynamics and jump height.The software itself has a modern GUI that allows the generation of the vehicle structure and the threat scenario together with an interactive analysis of the simulation results.The engineering tool is validated with small size generic vehicle tests where jump height and the vehicle motion are compared. The software allows a detailed analysis of global IED effects and can be additionally used in an inverse mode for the analysis of incidents with the determination of used HE masses in an IED attack.展开更多
With the development of EMC technology, EMC assessment has become increasingly important in EMC design. Although numerous EMC assessment models are available today, few of them can provide a tradeoff between efficienc...With the development of EMC technology, EMC assessment has become increasingly important in EMC design. Although numerous EMC assessment models are available today, few of them can provide a tradeoff between efficiency and accuracy for the specific case of military vehicular communication systems. Face to this situation, a modified four-level assessment model is proposed in the paper. First, the development of EMC assessment technology is briefly reviewed, and the theoretical mechanism of EMI environment is introduced. Then, the architecture of the proposed model is outlined, and the assessment methods are explored. To demonstrate the application of it, an example involving a communication system in a military vehicle is presented. From the physical layer to the signal layer, a hierarchical assessment on the entire system is successfully performed based on the proposed model, and we can make a qualitative EMC assessment on the EMC performance of the system. Based on a comparison with the traditional model, we conclude that the proposed model is more accurate, more efficient and less time-consuming, which is suitable for the EMC assessment on militaryvehicular communication systems. We hope that the proposed model will serve as a useful reference for system-level EMC assessments for other systems.展开更多
The navy and other Department of Defense organizations are increasingly interested in the use of unmanned surface vehicles (USVs) for a variety of missions and applications. The term USV refers to any vehicle that ope...The navy and other Department of Defense organizations are increasingly interested in the use of unmanned surface vehicles (USVs) for a variety of missions and applications. The term USV refers to any vehicle that operates on the surface of the water without a crew. USVs have the potential, and in some cases the demonstrated ability, to reduce risk to manned forces, provide the necessary force multiplication to accomplish military missions, perform tasks which manned vehicles cannot, and do so in a way that is affordable for the navy. A survey of USV activities worldwide as well as the general technical challenges of USVs was presented below. A general description of USVs was provided along with their typical applications. The technical challenges of developing a USV include its intelligence level, control, high stability, and developmental cost reduction. Through the joint efforts of researchers around the world, it is believed that the development of USVs will enter a new phase in the near future, as USVs could soon be applied widely both in military and civilian service.展开更多
基金TRDir K. Hüsing from the German test range WTD-91 GF-440 in MeppenTRDir K. Neugebauer from BAAINBw for funding this work
文摘The detonation of an IED near a military vehicle induces different damage effects on the vehicle and its occupants. There are local effects from fragments and projectiles but there are also global effects from a momentum transfer on the complete vehicle structure and a subsequent dynamical motion of the vehicle with phenomena like overturning or vehicle displacement from the road.Questions like this can be answered with numerical finite-element simulations but there is also the need for engineering tools that allow a quick and nearly instantaneous simulation of these phenomena. The following work presents an approach for a fast analysis of global IED effects on vehicles. The physical modelling is based on analytical formula and empirical data that describe the momentum transfer of a detonation on a nearby structure. This momentum is the initial condition for the calculation of the following vehicle motion and the simulation of vehicle dynamics and jump height.The software itself has a modern GUI that allows the generation of the vehicle structure and the threat scenario together with an interactive analysis of the simulation results.The engineering tool is validated with small size generic vehicle tests where jump height and the vehicle motion are compared. The software allows a detailed analysis of global IED effects and can be additionally used in an inverse mode for the analysis of incidents with the determination of used HE masses in an IED attack.
基金supported by the National Moon Exploration Program of China (No. TY3Q20110020)in part supported by the 13th Five-Year Community Technology Research Program of National Equipment Development Department of China (No.41409020301)the National Natural Science Foundation of China (50971094)
文摘With the development of EMC technology, EMC assessment has become increasingly important in EMC design. Although numerous EMC assessment models are available today, few of them can provide a tradeoff between efficiency and accuracy for the specific case of military vehicular communication systems. Face to this situation, a modified four-level assessment model is proposed in the paper. First, the development of EMC assessment technology is briefly reviewed, and the theoretical mechanism of EMI environment is introduced. Then, the architecture of the proposed model is outlined, and the assessment methods are explored. To demonstrate the application of it, an example involving a communication system in a military vehicle is presented. From the physical layer to the signal layer, a hierarchical assessment on the entire system is successfully performed based on the proposed model, and we can make a qualitative EMC assessment on the EMC performance of the system. Based on a comparison with the traditional model, we conclude that the proposed model is more accurate, more efficient and less time-consuming, which is suitable for the EMC assessment on militaryvehicular communication systems. We hope that the proposed model will serve as a useful reference for system-level EMC assessments for other systems.
基金Research Fund from Science and Technology on Underwater Vehicle Laboratory
文摘The navy and other Department of Defense organizations are increasingly interested in the use of unmanned surface vehicles (USVs) for a variety of missions and applications. The term USV refers to any vehicle that operates on the surface of the water without a crew. USVs have the potential, and in some cases the demonstrated ability, to reduce risk to manned forces, provide the necessary force multiplication to accomplish military missions, perform tasks which manned vehicles cannot, and do so in a way that is affordable for the navy. A survey of USV activities worldwide as well as the general technical challenges of USVs was presented below. A general description of USVs was provided along with their typical applications. The technical challenges of developing a USV include its intelligence level, control, high stability, and developmental cost reduction. Through the joint efforts of researchers around the world, it is believed that the development of USVs will enter a new phase in the near future, as USVs could soon be applied widely both in military and civilian service.