The diurnal variation of precipitation over the Dabie Mountains(DBM) in eastern China during the 2013 mei-yu season is investigated with forecasts of a regional convection-permitting model. Simulated precipitation is ...The diurnal variation of precipitation over the Dabie Mountains(DBM) in eastern China during the 2013 mei-yu season is investigated with forecasts of a regional convection-permitting model. Simulated precipitation is verified against surface rain-gauge observations. The observed morning precipitation peak on the windward(relative to the prevailing synoptic-scale wind) side of the DBM is reproduced with good spatial and temporal accuracy. The interaction between the DBM and a nocturnal boundary layer low-level jet(BLJ) due to the inertial oscillation mechanism is shown to be responsible for this precipitation peak. The BLJ is aligned with the lower-level southwesterly synoptic-scale flow that carries abundant moisture.The BLJ core is established at around 0200 LST upwind of the mountains. It moves towards the DBM and reaches maximum intensity at about 70 km ahead of the mountains. When the BLJ impinges upon the windward side of the DBM in the early morning, mechanical lifting of moist air leads to condensation and subsequent precipitation.展开更多
We have studied the ground state configurations of a rotating Bose-Einstein condensation in a toroidal trap as the radius of the central Ganssian potentiaJ expands adiabatically. Firstly, we observe that the vortices ...We have studied the ground state configurations of a rotating Bose-Einstein condensation in a toroidal trap as the radius of the central Ganssian potentiaJ expands adiabatically. Firstly, we observe that the vortices are devoured successively into the central hole of the condensate to form a giant vortex as the radius of the trap expands. When all the pre-existing vortices are absorbed, the angular momentum of the system still increase as the radius of the ganssian potential enlarges. When increasing the interaction strength, we find that more singly quantized vortices are squeezed into the condensate, but the giant vortex does not change.展开更多
In this paper,on the basis of making full use of the characteristics of unconstrained generalized geometric programming(GGP),we establish a nonmonotonic trust region algorithm via the conjugate path for solving unco...In this paper,on the basis of making full use of the characteristics of unconstrained generalized geometric programming(GGP),we establish a nonmonotonic trust region algorithm via the conjugate path for solving unconstrained GGP problem.A new type of condensation problem is presented,then a particular conjugate path is constructed for the problem,along which we get the approximate solution of the problem by nonmonotonic trust region algorithm,and further prove that the algorithm has global convergence and quadratic convergence properties.展开更多
To analyze the stability problem of spatial beam structure more accurately, a spatial cubic spline geometric nonlinear beam dement was proposed considering the seeond-order effect. The deformation field was built with...To analyze the stability problem of spatial beam structure more accurately, a spatial cubic spline geometric nonlinear beam dement was proposed considering the seeond-order effect. The deformation field was built with cubic spline function, and its curvature degree of freedom (DOF) was eliminated by static condensation method. Then we got the geometric nonlinear stiffness matrix of the new spatial two.node Euler-Bernouili beam dement. Several examples proved calculation accuracy of the critical load by meshing a bar to one element using the method of this paper was equivalent to mesh a bar to 3 or 4 traditional nonlinear beam dements.展开更多
Cold-formed steel structures are steel structure products constructed from sheets or coils using cold rolling, press brake or bending brake method. These structures are extensively employed in building construction in...Cold-formed steel structures are steel structure products constructed from sheets or coils using cold rolling, press brake or bending brake method. These structures are extensively employed in building construction industry due to their light mass, ductility by economic cold forming operations, favorable strength-to-mass ratio and other factors. The utilization of cold formed steel sections with concrete as composite can hugely reduce the construction cost. However, the use of cold formed steel members in composite concrete beams has been very limited. A comprehensive review of developments in composite beam with cold formed steel sections was introduced. It was revealed that employing cold-formed steel channel section to replace reinforcement bars in conventional reinforced concrete beam results in a significant cost reduction without reducing strength capacity. The use of composite beam consisting of cold-formed steel open or close box and filled concrete could also reduce construction cost. Lighter composite girder for bridges with cold-formed steel of U section was introduced. Moreover, types of shear connectors to provide composite action between cold-formed steel beam and concrete slab were presented. However, further studies to investigate the effects of metal decking on the behavior of composite beam with cold-formed steel section and introduction of ductile shear connectors were recommended.展开更多
The chromokinesin Kif4A controls proper chromosome condensation, congression/alignment, and cytokinesis to ensure faithful genetic inheritance. Here, we report that Cdk phosphorylation of human Kif4A at T1161 licenses...The chromokinesin Kif4A controls proper chromosome condensation, congression/alignment, and cytokinesis to ensure faithful genetic inheritance. Here, we report that Cdk phosphorylation of human Kif4A at T1161 licenses Kif4A chromosomal localization, which, in turn, controls Kif4A early mitotic function. Phosphorylated Kif4A (Kif4A^WT) or Cdk phospho-mimetic Kif4A mutant (Kif4A^TE) associated with chromosomes and condensin I (non-SMC subunit CAP-G and core subunit SMC2) to regulate chromosome condensation, spindle morphology, and chromosome congression/alignment in early mitosis. In contrast, Cdk non-phosphorylatable Kif4A mutant (Kif4A^TA) could neither localize on chromosomes nor associate with CAP-G and SMC2. Furthermore, Kif4A^TA could not rescue defective chromosome condensation, spindle morphology, or chromosome congression/alignment in cells depleted of endogenous Kif4A, which activated a mitotic checkpoint and delayed early mitotic progression. However, targeting Kif4A^TA to chromosomes by fusion of Kif4A^TA with Histone H1 resulted in restoration of chromosome and spindle functions of Kif4A, similar to Kif4A^WT and Kif4A^TE, in cells depleted of endogenous Kif4A. Thus, our results demonstrate that Cdk phosphorylation-licensed chromosomal localization of Kif4A plays a critical role in regulating early mitotic functions of Kif4A that are important for early mitotic progression.展开更多
Employing triflic anhydride/2-fluoropyridine as an activation system, the coupling reactions of secondary N-aryl amides with terminal alkynes yielded substituted quinolines in moderate to excellent yields. The reactio...Employing triflic anhydride/2-fluoropyridine as an activation system, the coupling reactions of secondary N-aryl amides with terminal alkynes yielded substituted quinolines in moderate to excellent yields. The reaction tolerated both electron-donating and electron-withdrawing groups at the benzamide moiety. Electron-rich aryl acetylenes served as excellent coupling partners, and aliphatic terminal alkynes such as cyclopropyl and conjugate vinyl acetylenes could also be used as reaction partners. By means of 2 D NMR techniques(heteronuclear multiple bond correlation(HMBC), heteronuclear single quantum correlation(HSQC)),nitrilium ions were probed as reactive intermediates which are in contrast with that suggested by Movassaghi on the basis of in situ IR monitoring experiments. On the basis of these results, a plausible mechanism for the formation of quinolines was suggested.展开更多
A simultaneous visualization and measurement experiment was carried out to investigate condensation flow pat- terns and condensing heat transfer characteristics of refrigerant R14 lb in parallel horizontal multi-chann...A simultaneous visualization and measurement experiment was carried out to investigate condensation flow pat- terns and condensing heat transfer characteristics of refrigerant R14 lb in parallel horizontal multi-channels with liquid-vapor separator. The hydraulic diameter of each channel was 1.5 mm and the channel length was 100 ram. The refrigerant vapor flowing in the small channels was cooled by cooling water. The parallel horizontal mul- ti-channels were covered with a transparent silica glass for visualization of flow patterns. Experiments were per- formed at different inlet superheat temperatures (ranging from 3~C to 7~C). Mass velocity was in the range of 82.37 kg mZs1 to 35.56 kg m-2s1. It was found that there were three different flow patterns through the mul- ti-channels with the increase of mass velocity. The flow patterns in each channel pass almost tended to be same and all of them were annular flows.' The efficiency of the liquid-vapor separator with U-type was related to vapor mass velocity and the pressure in the small channels. It was also found that the heat transfer coefficient increased with the increase of the mass velocity while the cooling water mass flow rate increased. It increased to a top point and then decreased. It increased with the increase of superheat in the low superheat temperature region.展开更多
The unmodified graphitic carbon nitride(g-C_3N_4) suffers from low photocatalytic activity because of the unfavourable structure.In the present work,we reported a simple self-structural modification strategy to optimi...The unmodified graphitic carbon nitride(g-C_3N_4) suffers from low photocatalytic activity because of the unfavourable structure.In the present work,we reported a simple self-structural modification strategy to optimize the microstructure of g-C_3N_4 and obtained graphene-like g-C_3N_4 nanosheets with porous structure.In contrast to traditional thermal pyrolysis preparation of g-C_3N_4,the present thermal condensation was improved via pyrolysis of thiourea in an alumina crucible without a cover,followed by secondary heat treatment.The popcorn-like formation and layer-by-layer thermal exfoliation of graphene-like porous g-C_3N_4 was proposed to explain the formation mechanism.The photocatalytic removal performance of both NO and NO_2 with the graphene-like porous g-C_3N_4 for was significantly enhanced by selfstructural modification.Trapping experiments and in-situ diffuse reflectance infrared fourier transform spectroscopy(DRIFTS) measurement were conducted to detect the active species during photocatalysis and the conversion pathway of g-C_3N_4 photocatalysis for NO_x purification was revealed.The photocatalytic activity of graphene-like porous g-C_3N_4 was highly enhanced due to the improved charge separation and increased oxidation capacity of the ·O_2^- radicals and holes.This work could not only provide a novel self-structural modification for design of highly efficient photocatalysts,but also offer new insights into the mechanistic understanding of g-C_3N_4 photocatalysis.展开更多
Herein, we review the development, applications and potential prospects of CBT-Cys click reaction. This click condensation reaction is based on the condensation reaction between 2-cyanobenzothiazole(CBT) and D-cystein...Herein, we review the development, applications and potential prospects of CBT-Cys click reaction. This click condensation reaction is based on the condensation reaction between 2-cyanobenzothiazole(CBT) and D-cysteine(D-Cys) in fireflies and has high biocompatibility and controllability in physiological solutions. Under the control of p H, reduction, or enzyme, this CBTbased click reaction has been widely applied to a wide range of biomedical fields such as protein labeling, molecular imaging(e.g., optical imaging, nuclear imaging, magnetic resonance imaging and photoacoustic imaging), nanomaterial fabrication, cancer therapy, and other potentialities.展开更多
In recent years,separating and extracting technologies of condensate gas have been developed by combining a swirl flow with non-equilibrium condensation phenomena of condensate gas generated in a supersonic flow.The t...In recent years,separating and extracting technologies of condensate gas have been developed by combining a swirl flow with non-equilibrium condensation phenomena of condensate gas generated in a supersonic flow.The technology can reduce the size of the device and does not use chemicals.However,there are many unresolved problems for performance of the separation,extraction and operating principle.Therefore it is necessary to research further in order to improve the performance of the equipment.In the present study,the numerical study was carried out to clarify the effect of the heterogeneous condensation on the characteristics of the swirling flow field in a supersonic annular nozzle,and the differences between homogeneous condensation and heterogeneous condensation in the flow field.As the results,it is found that the condensation flow with a swirl affects the position of sonic line,the generating position of condensate and the radial distribution ratio of liquid phase.展开更多
Energy crisis make the effective use of low grade energy more and more urgent. It is still a worldwide difficult conundrum. To efficiently recover low grade heat, this paper deals with a theoretical analysis of a new ...Energy crisis make the effective use of low grade energy more and more urgent. It is still a worldwide difficult conundrum. To efficiently recover low grade heat, this paper deals with a theoretical analysis of a new power generation method driven by a low grade heat source. When the temperature of the low grade heat source exceeds the saturated temperature, it can heat the liquid into steam. If the steam is sealed and cooled in a container, it will lead to a negative pressure condition. The proposed power generation method utilizes the negative pressure condition in the sealed container, called as a condensator. When the condensator is connected to a liquid pool, the liquid will be pumped into it by the negative pressure condition. After the conden- sator is filled by liquid, the liquid flows back into the pool and drives the turbine to generate electricity. According to our analysis, for water, the head pressure of water pumped into the condensator could reach 9.5 m when the temperature of water in the pool is 25 ℃, and the steam temperature is 105 ℃. Theoretical thermal efficiency of this power generation system could reach 3.2% to 5.8% varying with the altitude of the condensator to the water level, ignoring steam leakage loss.展开更多
To explore the condensation characteristics of vapor flow inside vertical small-diameter tubes, the classical Nusselt theory is revised and an analytical model with variable tube wall temperature is established by con...To explore the condensation characteristics of vapor flow inside vertical small-diameter tubes, the classical Nusselt theory is revised and an analytical model with variable tube wall temperature is established by considering the effect of surface tension exerted by condensate film bending as well as the effect of shear stress on vapor-liquid interface. The effects of various factors including tube wall temperature and gravityon flow condensation in small-diameter tubes are analyzed theoretically to show the heat transfer characteristics. Comparison with the experimental data indicates that the proposed analytical model is fit to reveal the fundamental characteristics of flow condensation heat transfer in vertical small-diameter tube.展开更多
基金supported by the Special Foundation of the China Meteorological Administration (Grant No.GYHY201506006)supported by the National Science Foundation of China (Grant Nos.41405100,41322032 and 41275031)
文摘The diurnal variation of precipitation over the Dabie Mountains(DBM) in eastern China during the 2013 mei-yu season is investigated with forecasts of a regional convection-permitting model. Simulated precipitation is verified against surface rain-gauge observations. The observed morning precipitation peak on the windward(relative to the prevailing synoptic-scale wind) side of the DBM is reproduced with good spatial and temporal accuracy. The interaction between the DBM and a nocturnal boundary layer low-level jet(BLJ) due to the inertial oscillation mechanism is shown to be responsible for this precipitation peak. The BLJ is aligned with the lower-level southwesterly synoptic-scale flow that carries abundant moisture.The BLJ core is established at around 0200 LST upwind of the mountains. It moves towards the DBM and reaches maximum intensity at about 70 km ahead of the mountains. When the BLJ impinges upon the windward side of the DBM in the early morning, mechanical lifting of moist air leads to condensation and subsequent precipitation.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10904096 and 10604024the Natural Science Foundation of Beijing under Grant No.1092009
文摘We have studied the ground state configurations of a rotating Bose-Einstein condensation in a toroidal trap as the radius of the central Ganssian potentiaJ expands adiabatically. Firstly, we observe that the vortices are devoured successively into the central hole of the condensate to form a giant vortex as the radius of the trap expands. When all the pre-existing vortices are absorbed, the angular momentum of the system still increase as the radius of the ganssian potential enlarges. When increasing the interaction strength, we find that more singly quantized vortices are squeezed into the condensate, but the giant vortex does not change.
基金Supported by the National Science Foundation of China(10671126) Supported by the Shanghai Municipal Government Project(S30501)+3 种基金 Supported by the Innovation Fund Project for Graduate Student of Shanghai(JWCXSL1001) Supported by the Youth Foundation of Henan Polytechnic University(Q20093) Supported by the Applied Mathematics Provinciallevel Key Discipline of Henan Province Supported by Operational Research and Control Theory Key Discipline of Henan Polytechnic University
文摘In this paper,on the basis of making full use of the characteristics of unconstrained generalized geometric programming(GGP),we establish a nonmonotonic trust region algorithm via the conjugate path for solving unconstrained GGP problem.A new type of condensation problem is presented,then a particular conjugate path is constructed for the problem,along which we get the approximate solution of the problem by nonmonotonic trust region algorithm,and further prove that the algorithm has global convergence and quadratic convergence properties.
文摘To analyze the stability problem of spatial beam structure more accurately, a spatial cubic spline geometric nonlinear beam dement was proposed considering the seeond-order effect. The deformation field was built with cubic spline function, and its curvature degree of freedom (DOF) was eliminated by static condensation method. Then we got the geometric nonlinear stiffness matrix of the new spatial two.node Euler-Bernouili beam dement. Several examples proved calculation accuracy of the critical load by meshing a bar to one element using the method of this paper was equivalent to mesh a bar to 3 or 4 traditional nonlinear beam dements.
文摘Cold-formed steel structures are steel structure products constructed from sheets or coils using cold rolling, press brake or bending brake method. These structures are extensively employed in building construction industry due to their light mass, ductility by economic cold forming operations, favorable strength-to-mass ratio and other factors. The utilization of cold formed steel sections with concrete as composite can hugely reduce the construction cost. However, the use of cold formed steel members in composite concrete beams has been very limited. A comprehensive review of developments in composite beam with cold formed steel sections was introduced. It was revealed that employing cold-formed steel channel section to replace reinforcement bars in conventional reinforced concrete beam results in a significant cost reduction without reducing strength capacity. The use of composite beam consisting of cold-formed steel open or close box and filled concrete could also reduce construction cost. Lighter composite girder for bridges with cold-formed steel of U section was introduced. Moreover, types of shear connectors to provide composite action between cold-formed steel beam and concrete slab were presented. However, further studies to investigate the effects of metal decking on the behavior of composite beam with cold-formed steel section and introduction of ductile shear connectors were recommended.
基金This work was supported by CAMS Innovation Fund for Medical Sciences (CIFMS) (2016-12M-1-001), the National Natural Science Foundation of China (31171299, 31271485, and 31301138), the National Basic Research Program of China (2012CB910703), and Tianjin Research Program of Application Foundation and Advanced Technology (12JC2DJC21400). C.Z. is supported by Program for New Century Excellent Talents in University in China (NCET-11-1066).
文摘The chromokinesin Kif4A controls proper chromosome condensation, congression/alignment, and cytokinesis to ensure faithful genetic inheritance. Here, we report that Cdk phosphorylation of human Kif4A at T1161 licenses Kif4A chromosomal localization, which, in turn, controls Kif4A early mitotic function. Phosphorylated Kif4A (Kif4A^WT) or Cdk phospho-mimetic Kif4A mutant (Kif4A^TE) associated with chromosomes and condensin I (non-SMC subunit CAP-G and core subunit SMC2) to regulate chromosome condensation, spindle morphology, and chromosome congression/alignment in early mitosis. In contrast, Cdk non-phosphorylatable Kif4A mutant (Kif4A^TA) could neither localize on chromosomes nor associate with CAP-G and SMC2. Furthermore, Kif4A^TA could not rescue defective chromosome condensation, spindle morphology, or chromosome congression/alignment in cells depleted of endogenous Kif4A, which activated a mitotic checkpoint and delayed early mitotic progression. However, targeting Kif4A^TA to chromosomes by fusion of Kif4A^TA with Histone H1 resulted in restoration of chromosome and spindle functions of Kif4A, similar to Kif4A^WT and Kif4A^TE, in cells depleted of endogenous Kif4A. Thus, our results demonstrate that Cdk phosphorylation-licensed chromosomal localization of Kif4A plays a critical role in regulating early mitotic functions of Kif4A that are important for early mitotic progression.
基金supported by the National Key R&D Program of China (2017YFA0207302)the National Natural Science Foundation of China (21332007, 21672176)+1 种基金the Natural Science Foundation of Fujian Province, China (2017J01021)the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education, China
文摘Employing triflic anhydride/2-fluoropyridine as an activation system, the coupling reactions of secondary N-aryl amides with terminal alkynes yielded substituted quinolines in moderate to excellent yields. The reaction tolerated both electron-donating and electron-withdrawing groups at the benzamide moiety. Electron-rich aryl acetylenes served as excellent coupling partners, and aliphatic terminal alkynes such as cyclopropyl and conjugate vinyl acetylenes could also be used as reaction partners. By means of 2 D NMR techniques(heteronuclear multiple bond correlation(HMBC), heteronuclear single quantum correlation(HSQC)),nitrilium ions were probed as reactive intermediates which are in contrast with that suggested by Movassaghi on the basis of in situ IR monitoring experiments. On the basis of these results, a plausible mechanism for the formation of quinolines was suggested.
基金supported by the Fundamental Research Funds for the Central Universities(2017YJS168)
文摘A simultaneous visualization and measurement experiment was carried out to investigate condensation flow pat- terns and condensing heat transfer characteristics of refrigerant R14 lb in parallel horizontal multi-channels with liquid-vapor separator. The hydraulic diameter of each channel was 1.5 mm and the channel length was 100 ram. The refrigerant vapor flowing in the small channels was cooled by cooling water. The parallel horizontal mul- ti-channels were covered with a transparent silica glass for visualization of flow patterns. Experiments were per- formed at different inlet superheat temperatures (ranging from 3~C to 7~C). Mass velocity was in the range of 82.37 kg mZs1 to 35.56 kg m-2s1. It was found that there were three different flow patterns through the mul- ti-channels with the increase of mass velocity. The flow patterns in each channel pass almost tended to be same and all of them were annular flows.' The efficiency of the liquid-vapor separator with U-type was related to vapor mass velocity and the pressure in the small channels. It was also found that the heat transfer coefficient increased with the increase of the mass velocity while the cooling water mass flow rate increased. It increased to a top point and then decreased. It increased with the increase of superheat in the low superheat temperature region.
基金supported by the National Natural Science Foundation of China(51478070,21501016 and 21777011)the National Key R&D Program of China(2016YFC0204702)+3 种基金the Innovative Research Team of Chongqing(CXTDG201602014)the Natural Science Foundation of Chongqing(cstc2016jcyj A0481,cstc2017jcyj BX0052)the Early Career Scheme(ECS 809813) from Hong Kongthe Internal Research Grant from Hong Kong Institute of Education(R3588)
文摘The unmodified graphitic carbon nitride(g-C_3N_4) suffers from low photocatalytic activity because of the unfavourable structure.In the present work,we reported a simple self-structural modification strategy to optimize the microstructure of g-C_3N_4 and obtained graphene-like g-C_3N_4 nanosheets with porous structure.In contrast to traditional thermal pyrolysis preparation of g-C_3N_4,the present thermal condensation was improved via pyrolysis of thiourea in an alumina crucible without a cover,followed by secondary heat treatment.The popcorn-like formation and layer-by-layer thermal exfoliation of graphene-like porous g-C_3N_4 was proposed to explain the formation mechanism.The photocatalytic removal performance of both NO and NO_2 with the graphene-like porous g-C_3N_4 for was significantly enhanced by selfstructural modification.Trapping experiments and in-situ diffuse reflectance infrared fourier transform spectroscopy(DRIFTS) measurement were conducted to detect the active species during photocatalysis and the conversion pathway of g-C_3N_4 photocatalysis for NO_x purification was revealed.The photocatalytic activity of graphene-like porous g-C_3N_4 was highly enhanced due to the improved charge separation and increased oxidation capacity of the ·O_2^- radicals and holes.This work could not only provide a novel self-structural modification for design of highly efficient photocatalysts,but also offer new insights into the mechanistic understanding of g-C_3N_4 photocatalysis.
基金supported by the Ministry of Science and Technology of China (2016YFA0400904)the National Natural Science Foundation of China (21725505, 21675145)the Major program of Development Foundation of Hefei Center for Physical Science and Technology (2016FXZY006)
文摘Herein, we review the development, applications and potential prospects of CBT-Cys click reaction. This click condensation reaction is based on the condensation reaction between 2-cyanobenzothiazole(CBT) and D-cysteine(D-Cys) in fireflies and has high biocompatibility and controllability in physiological solutions. Under the control of p H, reduction, or enzyme, this CBTbased click reaction has been widely applied to a wide range of biomedical fields such as protein labeling, molecular imaging(e.g., optical imaging, nuclear imaging, magnetic resonance imaging and photoacoustic imaging), nanomaterial fabrication, cancer therapy, and other potentialities.
文摘In recent years,separating and extracting technologies of condensate gas have been developed by combining a swirl flow with non-equilibrium condensation phenomena of condensate gas generated in a supersonic flow.The technology can reduce the size of the device and does not use chemicals.However,there are many unresolved problems for performance of the separation,extraction and operating principle.Therefore it is necessary to research further in order to improve the performance of the equipment.In the present study,the numerical study was carried out to clarify the effect of the heterogeneous condensation on the characteristics of the swirling flow field in a supersonic annular nozzle,and the differences between homogeneous condensation and heterogeneous condensation in the flow field.As the results,it is found that the condensation flow with a swirl affects the position of sonic line,the generating position of condensate and the radial distribution ratio of liquid phase.
基金Project (No. 51109174) supported by the National Natural Science Foundation of China
文摘Energy crisis make the effective use of low grade energy more and more urgent. It is still a worldwide difficult conundrum. To efficiently recover low grade heat, this paper deals with a theoretical analysis of a new power generation method driven by a low grade heat source. When the temperature of the low grade heat source exceeds the saturated temperature, it can heat the liquid into steam. If the steam is sealed and cooled in a container, it will lead to a negative pressure condition. The proposed power generation method utilizes the negative pressure condition in the sealed container, called as a condensator. When the condensator is connected to a liquid pool, the liquid will be pumped into it by the negative pressure condition. After the conden- sator is filled by liquid, the liquid flows back into the pool and drives the turbine to generate electricity. According to our analysis, for water, the head pressure of water pumped into the condensator could reach 9.5 m when the temperature of water in the pool is 25 ℃, and the steam temperature is 105 ℃. Theoretical thermal efficiency of this power generation system could reach 3.2% to 5.8% varying with the altitude of the condensator to the water level, ignoring steam leakage loss.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 59995550-3) .
文摘To explore the condensation characteristics of vapor flow inside vertical small-diameter tubes, the classical Nusselt theory is revised and an analytical model with variable tube wall temperature is established by considering the effect of surface tension exerted by condensate film bending as well as the effect of shear stress on vapor-liquid interface. The effects of various factors including tube wall temperature and gravityon flow condensation in small-diameter tubes are analyzed theoretically to show the heat transfer characteristics. Comparison with the experimental data indicates that the proposed analytical model is fit to reveal the fundamental characteristics of flow condensation heat transfer in vertical small-diameter tube.