A mathematical model considering free nuclei was developed to reveal the migration behavior of the free nuclei. Numerical simulation results show that most of the nuclei on the top surface of the melt move downwards a...A mathematical model considering free nuclei was developed to reveal the migration behavior of the free nuclei. Numerical simulation results show that most of the nuclei on the top surface of the melt move downwards and distribute randomly inside the Al melt, which induces more nucleation sites resulting in grain refinement. At the same time, the effect of nuclei size on the nuclei distribution and refinement employing electric current pulse (ECP) was also investigated. The smaller nuclei migrate a short distance with the Al melt at lower speed. But for the larger nuclei, the migration downwards with higher speed benefits the refinement of interior grains of the melt. The research results help to better understand the refinement process and provide a more reasonable explanation of the grain refinement mechanism using ECP.展开更多
AIM: To study the blood coagulation response after partial hepatectomy (PH) at transcriptional level. METHODS: After PH of rats, the associated genes with blood coagulation were obtained through reference to the datab...AIM: To study the blood coagulation response after partial hepatectomy (PH) at transcriptional level. METHODS: After PH of rats, the associated genes with blood coagulation were obtained through reference to the databases, and the gene expression changes in rat regenerating liver were analyzed by the Rat Genome 230 2.0 array. RESULTS: It was found that 107 genes were associated with liver regeneration. The initially and totally expressing gene numbers occurring in initiation phase of liver regeneration (0.5-4 h after PH), G0/G1 transition (4-6 h after PH), cell proliferation (6-66 h after PH), cell differentiation and structure-function reconstruction (66-168 h after PH) were 44, 11, 58, 7 and 44, 33, 100, 71 respectively, showing that the associated genes were mainly triggered in the forepart and prophase, and worked at different phases. According to their expression similarity, these genes were classified into 5 groups: only up-, predominantly up-, only down-, predominantly down-, up- and down-regulation, involving 44, 8, 36, 13 and 6 genes, respectively, and the total times of their up- and down-regulation expression were 342 and 253, respectively, demonstrating that the number of the up-regulated genes was more than that of the down- regulated genes. Their time relevance was classified into 15 groups, showing that the cellular physiological and biochemical activities were staggered during liver regeneration. According to gene expression patterns, they were classified into 29 types, suggesting that their protein activities were diverse and complex during liver regeneration.CONCLUSION: The blood coagulation response is enhanced mainly in the forepart, prophase and anaphase of liver regeneration, in which the response in the forepart, prophase of liver regeneration can prevent the bleeding caused by partial hepatectomy, whereas that in the anaphase contributes to the structure-function reorganization of regenerating liver. In the process, 107 genes associated with liver regeneration play an important role.展开更多
Mg-5.88 Zn-0.53 Cu-0.16 Zr(wt.%)alloy was solidified at 2-6 GPa using high-pressure solidification technology.The microstructure,strengthening mechanism and compressive properties at room temperature were studied usin...Mg-5.88 Zn-0.53 Cu-0.16 Zr(wt.%)alloy was solidified at 2-6 GPa using high-pressure solidification technology.The microstructure,strengthening mechanism and compressive properties at room temperature were studied using SEM and XRD.The results showed that the microstructure was refined and the secondary dendrite spacing changed from 35μm at atmospheric pressure to 10μm at 6 GPa gradually.Also,Mg(Zn,Cu)2 and Mg Zn Cu eutectic phases were distributed in the shape of network,while under high pressures the second phases(Mg(Zn,Cu)2 and Mg7 Zn3)were mainly granular or strip-like.The solid solubility of Zn and Cu in the matrix built up over increasing solidification pressure and reached 4.12%and 0.32%respectively at 6 GPa.The hardness value was HV 90 and the maximum compression resistance was 430 MPa.Therefore,the grain refinement strengthening,the second phase strengthening and the solid solution strengthening are the principal strengthening mechanisms.展开更多
The fractal model about water characteristics of solidified sediment was built according to the granular metric analysis curve of solidified dredged sediment, the measured value during the low-suction stage of the cur...The fractal model about water characteristics of solidified sediment was built according to the granular metric analysis curve of solidified dredged sediment, the measured value during the low-suction stage of the curing process was used for fitting parameters in the model to obtain the complete water characteristic curve of solidified dredged sediment. Then, the quantitative calculation model of capillary water, attached water, evaporated water and bound water was built by the water characteristic curve and from the view of quantitative angle, the paper analyzed the solidification mechanism of solidified dredged sediment. The result showed that: the model can realize the quantitative calculation about different tapes of water during the curing process, the evaporated water during the curing process mainly came from the capillary water, and the generated bound water during the curing reaction came from the attached water.展开更多
Peritectic reaction is seriously limited by solute diffusion, it can rarely be completed during practical materials processing.One side, the grain refinement of primary phase dendrites resulting from high undercooling...Peritectic reaction is seriously limited by solute diffusion, it can rarely be completed during practical materials processing.One side, the grain refinement of primary phase dendrites resulting from high undercooling condition facilitates the completion of peritectic transformation. Otherwise, those peritectic alloys with positive mixing enthalpy usually display展开更多
The dynamic solidification of ternary Ag38.5Cu33.4Ge28.1 eutectic alloy within a 35 kHz ultrasonic field is investigated and compared with both its equilibrium solidification by DSC method and its rapid solidification...The dynamic solidification of ternary Ag38.5Cu33.4Ge28.1 eutectic alloy within a 35 kHz ultrasonic field is investigated and compared with both its equilibrium solidification by DSC method and its rapid solidification in drop tube. The volume fractions of the primary (Ge) phase and pseudobinary (Ag+ε2) eutectic solidified within ultrasonic field are larger than those formed under equilibrium state, whereas that of ternary (Ag+ε2+Ge) eutectic exhibits the reverse trend. During rapid solidification, the liquid alloy droplet directly solidifies into ternary (Ag+ε2+Ge) eutectic if its diameter is smaller than 350 um. The ultrasound stimulates the nucleation of alloy melt and prevents the bulk undercooling. With the increase of sound intensity, the primary (Ge) phase transfers from faceted dendrites to nonfaceted blocks with blunt edges, and its grain size is remarkably reduced. Both pseudobinary (Ag+ε2) and ternary (Ag+ε2+Ge) eutectics experience a morphological transition from regular to anomalous structures. This indicates that their cooperative growth mode is replaced by independent growth of eutectic phases under the combined effects of cavitation and acoustic streaming. The ultrasound also shows a prominent coarsening effect to the pseudobinary (Ag+ε2) and ternary (Ag+ε2+Ge) eutectics.展开更多
基金supported by the Scientific Instrument Developing Project of the Chinese Academy of Sciences(No.YJKYYQ20190008)the Strategic Pioneer Program on Space Science,Chinese Academy of Sciences(No.XDA15013600)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Nos.2013105,Y201728)。
基金Project(SELF-2011-01)supported by the Open Project of Shanghai Key Laboratory of Modern Metallurgy and Materials Processing,ChinaProjects(51204109,51035004)supported by the National Natural Science Foundation of China
文摘A mathematical model considering free nuclei was developed to reveal the migration behavior of the free nuclei. Numerical simulation results show that most of the nuclei on the top surface of the melt move downwards and distribute randomly inside the Al melt, which induces more nucleation sites resulting in grain refinement. At the same time, the effect of nuclei size on the nuclei distribution and refinement employing electric current pulse (ECP) was also investigated. The smaller nuclei migrate a short distance with the Al melt at lower speed. But for the larger nuclei, the migration downwards with higher speed benefits the refinement of interior grains of the melt. The research results help to better understand the refinement process and provide a more reasonable explanation of the grain refinement mechanism using ECP.
基金Supported by the National Natural Science Foundation of China, No. 30270673
文摘AIM: To study the blood coagulation response after partial hepatectomy (PH) at transcriptional level. METHODS: After PH of rats, the associated genes with blood coagulation were obtained through reference to the databases, and the gene expression changes in rat regenerating liver were analyzed by the Rat Genome 230 2.0 array. RESULTS: It was found that 107 genes were associated with liver regeneration. The initially and totally expressing gene numbers occurring in initiation phase of liver regeneration (0.5-4 h after PH), G0/G1 transition (4-6 h after PH), cell proliferation (6-66 h after PH), cell differentiation and structure-function reconstruction (66-168 h after PH) were 44, 11, 58, 7 and 44, 33, 100, 71 respectively, showing that the associated genes were mainly triggered in the forepart and prophase, and worked at different phases. According to their expression similarity, these genes were classified into 5 groups: only up-, predominantly up-, only down-, predominantly down-, up- and down-regulation, involving 44, 8, 36, 13 and 6 genes, respectively, and the total times of their up- and down-regulation expression were 342 and 253, respectively, demonstrating that the number of the up-regulated genes was more than that of the down- regulated genes. Their time relevance was classified into 15 groups, showing that the cellular physiological and biochemical activities were staggered during liver regeneration. According to gene expression patterns, they were classified into 29 types, suggesting that their protein activities were diverse and complex during liver regeneration.CONCLUSION: The blood coagulation response is enhanced mainly in the forepart, prophase and anaphase of liver regeneration, in which the response in the forepart, prophase of liver regeneration can prevent the bleeding caused by partial hepatectomy, whereas that in the anaphase contributes to the structure-function reorganization of regenerating liver. In the process, 107 genes associated with liver regeneration play an important role.
基金Projects(51675092,51775099)supported by the National Natural Science Foundation of ChinaProjects(E2018501030,E2018501033,E2018501032)supported by the Natural Science Foundation of Hebei Province,China.
文摘Mg-5.88 Zn-0.53 Cu-0.16 Zr(wt.%)alloy was solidified at 2-6 GPa using high-pressure solidification technology.The microstructure,strengthening mechanism and compressive properties at room temperature were studied using SEM and XRD.The results showed that the microstructure was refined and the secondary dendrite spacing changed from 35μm at atmospheric pressure to 10μm at 6 GPa gradually.Also,Mg(Zn,Cu)2 and Mg Zn Cu eutectic phases were distributed in the shape of network,while under high pressures the second phases(Mg(Zn,Cu)2 and Mg7 Zn3)were mainly granular or strip-like.The solid solubility of Zn and Cu in the matrix built up over increasing solidification pressure and reached 4.12%and 0.32%respectively at 6 GPa.The hardness value was HV 90 and the maximum compression resistance was 430 MPa.Therefore,the grain refinement strengthening,the second phase strengthening and the solid solution strengthening are the principal strengthening mechanisms.
基金Acknowledgments Foundation item: National Science Foundation of China (50808068) The Ph.D. Programs Foundation of Ministry of Education of China (200802941001).
文摘The fractal model about water characteristics of solidified sediment was built according to the granular metric analysis curve of solidified dredged sediment, the measured value during the low-suction stage of the curing process was used for fitting parameters in the model to obtain the complete water characteristic curve of solidified dredged sediment. Then, the quantitative calculation model of capillary water, attached water, evaporated water and bound water was built by the water characteristic curve and from the view of quantitative angle, the paper analyzed the solidification mechanism of solidified dredged sediment. The result showed that: the model can realize the quantitative calculation about different tapes of water during the curing process, the evaporated water during the curing process mainly came from the capillary water, and the generated bound water during the curing reaction came from the attached water.
文摘Peritectic reaction is seriously limited by solute diffusion, it can rarely be completed during practical materials processing.One side, the grain refinement of primary phase dendrites resulting from high undercooling condition facilitates the completion of peritectic transformation. Otherwise, those peritectic alloys with positive mixing enthalpy usually display
基金supported by the National Natural Science Foundation of China(Grant Nos.50971105 and 51201136)Doctoral Fund of Ministry of Education of China(Grant No.20126102120059)+1 种基金Aviation Foundation of China(Grant No.2012ZF53069)Technology Foundation for Selected Overseas Chinese Scholar,ShaanXi Province,NPU Excellent Personnel Supporting Project of Ao Xiang Star,and Fundamental Research Fund of Northwestern Polytechnical University(Grant No.JC20110280)
文摘The dynamic solidification of ternary Ag38.5Cu33.4Ge28.1 eutectic alloy within a 35 kHz ultrasonic field is investigated and compared with both its equilibrium solidification by DSC method and its rapid solidification in drop tube. The volume fractions of the primary (Ge) phase and pseudobinary (Ag+ε2) eutectic solidified within ultrasonic field are larger than those formed under equilibrium state, whereas that of ternary (Ag+ε2+Ge) eutectic exhibits the reverse trend. During rapid solidification, the liquid alloy droplet directly solidifies into ternary (Ag+ε2+Ge) eutectic if its diameter is smaller than 350 um. The ultrasound stimulates the nucleation of alloy melt and prevents the bulk undercooling. With the increase of sound intensity, the primary (Ge) phase transfers from faceted dendrites to nonfaceted blocks with blunt edges, and its grain size is remarkably reduced. Both pseudobinary (Ag+ε2) and ternary (Ag+ε2+Ge) eutectics experience a morphological transition from regular to anomalous structures. This indicates that their cooperative growth mode is replaced by independent growth of eutectic phases under the combined effects of cavitation and acoustic streaming. The ultrasound also shows a prominent coarsening effect to the pseudobinary (Ag+ε2) and ternary (Ag+ε2+Ge) eutectics.