A novel series of poly(N-isopropylacrylamide-co-hydroxyethyl methacrylate) (p(NIPAM-co-HEMA)) microgels were prepared through precipitation polymerization. Nuclear magnetic resonance (NMR), transmission electron micro...A novel series of poly(N-isopropylacrylamide-co-hydroxyethyl methacrylate) (p(NIPAM-co-HEMA)) microgels were prepared through precipitation polymerization. Nuclear magnetic resonance (NMR), transmission electron microscopy (TEM), ultraviolet-visible spectroscopy (UV) and dynamic light scattering (DLS) were employed to characterize the microgels. The experimental results indicate that the prepared microgels with narrow distribution remain good temperature sensitivity after incorporation of functional-OH groups. In marked contrast to the general rule, incorporation of hydrophilic HEMA makes the volume-phase-transition temperature shift to the lower temperature due to the strong intermolecular H-bonding between amide and -OH groups, -OH and -OH groups.展开更多
文摘A novel series of poly(N-isopropylacrylamide-co-hydroxyethyl methacrylate) (p(NIPAM-co-HEMA)) microgels were prepared through precipitation polymerization. Nuclear magnetic resonance (NMR), transmission electron microscopy (TEM), ultraviolet-visible spectroscopy (UV) and dynamic light scattering (DLS) were employed to characterize the microgels. The experimental results indicate that the prepared microgels with narrow distribution remain good temperature sensitivity after incorporation of functional-OH groups. In marked contrast to the general rule, incorporation of hydrophilic HEMA makes the volume-phase-transition temperature shift to the lower temperature due to the strong intermolecular H-bonding between amide and -OH groups, -OH and -OH groups.