The paper proposes one test case generation algorithm tor partial/y-specified nondeterministictinite state machine and its validity analysis. After comparing with other generation methods, someproblems of testing obje...The paper proposes one test case generation algorithm tor partial/y-specified nondeterministictinite state machine and its validity analysis. After comparing with other generation methods, someproblems of testing object state diagram are given.展开更多
We investigate the phenomena of symmetry breaking and phase transition in theground state of Bose-Einstein condensates (BECs) trapped in a double square well and in an opticallattice well, respectively. By using stand...We investigate the phenomena of symmetry breaking and phase transition in theground state of Bose-Einstein condensates (BECs) trapped in a double square well and in an opticallattice well, respectively. By using standing-wave expansion method, we present symmetric andasymmetric ground state solutions of nonlinear Schroedinger equation (NLSE) with a symmetric doublesquare well potential for attractive nonlinearity. In particular, we study the ground state wavefunction's properties by changing the depth of potential and atomic interactions (here we restrictourselves to the attractive regime). By using the Fourier grid Hamiltonian method, we also reveal aphase transition of BECs trapped in one-dimensional optical lattice potential.展开更多
文摘The paper proposes one test case generation algorithm tor partial/y-specified nondeterministictinite state machine and its validity analysis. After comparing with other generation methods, someproblems of testing object state diagram are given.
文摘We investigate the phenomena of symmetry breaking and phase transition in theground state of Bose-Einstein condensates (BECs) trapped in a double square well and in an opticallattice well, respectively. By using standing-wave expansion method, we present symmetric andasymmetric ground state solutions of nonlinear Schroedinger equation (NLSE) with a symmetric doublesquare well potential for attractive nonlinearity. In particular, we study the ground state wavefunction's properties by changing the depth of potential and atomic interactions (here we restrictourselves to the attractive regime). By using the Fourier grid Hamiltonian method, we also reveal aphase transition of BECs trapped in one-dimensional optical lattice potential.