期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于接触状态感知的羊胴体后腿自适应分割控制方法 被引量:1
1
作者 谢斌 矫伟鹏 +3 位作者 刘楷东 吴竞 温昌凯 陈仲举 《农业机械学报》 EI CAS CSCD 北大核心 2023年第9期306-315,共10页
针对羊胴体后腿骨肉边界未知、尺寸多变和可见性约束限制造成的机器人自主分割精确度低与易受阻卡住的问题,提出一种羊胴体后腿自适应分割控制方法,并开展羊胴体后腿分割试验进行验证。该方法以接触状态感知为核心,有效提取接触类型特... 针对羊胴体后腿骨肉边界未知、尺寸多变和可见性约束限制造成的机器人自主分割精确度低与易受阻卡住的问题,提出一种羊胴体后腿自适应分割控制方法,并开展羊胴体后腿分割试验进行验证。该方法以接触状态感知为核心,有效提取接触类型特征、接触异常度特征和接触方向特征,通过构建深度时空神经网络识别接触类型,构建深度自编码网络估计接触异常度,采用主成分分析方法检测主要接触方向,实现接触状态多模态感知,机器人通过动态运动基元模仿学习人类操作技能,并结合接触状态感知信息实现关节运动的自适应调节。试验结果表明:深度时空网络模型在羊胴体后腿分割验证集上的识别准确率为98.44%;深度自编码网络模型能够较好地估计验证集样本的接触异常度,区分不同的接触状态。机器人基于自适应分割控制方法开展实际分割试验,与对照组相比,最大分割力下降幅度为29 N,最大力矩下降幅度为7 N·m,证明该方法的有效性;平均最大残留肉厚度为3.6 mm,平均分割残留率为4.9%,分割残留率与羊胴体质量呈现负相关,证明该方法具有良好的泛化性和准确性,并且整体分割效果较好,满足羊胴体后腿分割要求。 展开更多
关键词 羊后腿 分割机器人 接触状态感知 深度学习 模仿学习 自适应控制
下载PDF
A Fast Underwater Optical Image Segmentation Algorithm Based on a Histogram Weighted Fuzzy C-means Improved by PSO 被引量:4
2
作者 王士龙 徐玉如 庞永杰 《Journal of Marine Science and Application》 2011年第1期70-75,共6页
The S/N of an underwater image is low and has a fuzzy edge.If using traditional methods to process it directly,the result is not satisfying.Though the traditional fuzzy C-means algorithm can sometimes divide the image... The S/N of an underwater image is low and has a fuzzy edge.If using traditional methods to process it directly,the result is not satisfying.Though the traditional fuzzy C-means algorithm can sometimes divide the image into object and background,its time-consuming computation is often an obstacle.The mission of the vision system of an autonomous underwater vehicle (AUV) is to rapidly and exactly deal with the information about the object in a complex environment for the AUV to use the obtained result to execute the next task.So,by using the statistical characteristics of the gray image histogram,a fast and effective fuzzy C-means underwater image segmentation algorithm was presented.With the weighted histogram modifying the fuzzy membership,the above algorithm can not only cut down on a large amount of data processing and storage during the computation process compared with the traditional algorithm,so as to speed up the efficiency of the segmentation,but also improve the quality of underwater image segmentation.Finally,particle swarm optimization (PSO) described by the sine function was introduced to the algorithm mentioned above.It made up for the shortcomings that the FCM algorithm can not get the global optimal solution.Thus,on the one hand,it considers the global impact and achieves the local optimal solution,and on the other hand,further greatly increases the computing speed.Experimental results indicate that the novel algorithm can reach a better segmentation quality and the processing time of each image is reduced.They enhance efficiency and satisfy the requirements of a highly effective,real-time AUV. 展开更多
关键词 underwater image image segmentation autonomous underwater vehicle (AUV) gray-scale histogram fuzzy C-means real-time effectiveness sine function particle swarm optimization (PSO)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部