Controlling catalytic activities through surface strain engineering remains a hot topic in electrocatalysis studies.Herein,ab initio molecular dynamics(AIMD)simulation associated with free energy sampling technology w...Controlling catalytic activities through surface strain engineering remains a hot topic in electrocatalysis studies.Herein,ab initio molecular dynamics(AIMD)simulation associated with free energy sampling technology were performed to study the energetics of the key step of producing C2 products in electrocatalytic reduction of CO or CO_(2),i.e.CO dimerization,on strained Cu(100)with an explicit aqueous solvent model.It is worth mentioning that when compressive strain reaches a certain extent,the surface of Cu(100)will undergo reconstruction.We showed that,from tensile to compressive strain,the free energy barrier of CO dimerization decreased,suggesting that the activity of CO dimerization increases.It was also found that some of the reconstructed surfaces showing the lowest free energy barriers but might be less stable can be stabilized in the presence of adsorbed O or CO.Upon detailed quantitative analysis on the charges of surface Cu atoms,we found that the free energy barriers were strongly correlated with the charge of Cu atoms where the OCCO intermediate adsorbs.When the surfaces structures of Cu(100)were altered under compressive strain,the electronic structure of surface Cu atoms was monitored and thus the activity of electrocatalytic CO dimerization can be tuned.展开更多
The manuscript deals with the possibility of application of collective behavior of quantum particles to realize the quantum calculation procedure. The above collective behavior is likely resulted from interelectron co...The manuscript deals with the possibility of application of collective behavior of quantum particles to realize the quantum calculation procedure. The above collective behavior is likely resulted from interelectron correlations, characteristic for strongly correlated systems containing atoms with unoccupied 3d-, 4f- and 5f- shells. Among such systems can be the heterospin systems, complexes of paramagnetic ions of transition metals with organic radicals, because for such objects, spin-spin interaction between unpaired electron spins of different paramagnetic centers is typical. To apply the aforementioned possibility for the organization of real quantum calculations, it is necessary to synthesize such paramagnetic molecules (paramagnetic clusters), where the entangled states will be realized naturally by self-organization of atoms incorporated in these molecules, i.e., without additional external effect of q-bits on the system. The specified self-organization may be due to intramolecular processes and, in particular, intramolecular rearrangement called valence tautomerism, which leads to heterogeneous magnetic states, i.e., to phase layering in paramagnetic cluster owing to interelectron correlations. The states realized during the phase layering can be used for coding the digits. Since such states correspond to specific structures of para-magnetic molecule, they can exist as much as long under certain conditions. In turn, it means that the account of the interelectron correlations, which take place in strongly correlated compounds, allows (at least, in principle) one to create elementary quantum bit of the information capable of modeling the elementary logical operations. Creation of a network of such quantum bits combined in a certain sequence should be considered as a practical step on a way to experimental realization of the idea of quantum computer creation. The group consisting of three quantum points can make the basis of quantum computer. In such a gate, quantum points can be connected via the interaction modeled by spin-spin interaction, characteristic for ABX system in NMR spectroscopy. The tunnel effect, which can be easily realized and controlled, can act as an indicator of bonding in such a block. The calculation procedure can be organized assuming that the initial state of the group corresponds to 1. Infringement of such a state indicates to zero (or, on the contrary). Thus, the calculation in the binary system becomes organized. The creation of a network on the basis of combination of such processors in certain sequence should be considered as a practical step on a way to experimental realization of the idea of the quantum computer creation.展开更多
A study of the influence of magnetic field on the tautomerism, the authors proposed a new method for predicting possible new intra- and intermolecular rearrangements due to tautomerism. The authors have proposed a gen...A study of the influence of magnetic field on the tautomerism, the authors proposed a new method for predicting possible new intra- and intermolecular rearrangements due to tautomerism. The authors have proposed a general mechanism of possible rearrangements and tautomerism.展开更多
The chemical structure of heavy oil fractions obtained by liquid-solid adsorption chromatography was character-ized by 1 H nuclear magnetic resonance and X-ray diffraction.The molecular weight and molecular formula of...The chemical structure of heavy oil fractions obtained by liquid-solid adsorption chromatography was character-ized by 1 H nuclear magnetic resonance and X-ray diffraction.The molecular weight and molecular formula of asphaltene molecules were estimated by combining 1 H nuclear magnetic resonance and X-ray diffraction analyses,and were also ob-tained from vapor pressure osmometry and elemental analysis.Heteroatoms,such as S,N,and O atoms,were considered in the construction of average molecular structure of heavy oils.Two important structural parameters were proposed,including the number of alkyl chain substituents to aromatic rings and the number of total rings with heteroatoms.Ultimately,the av-erage molecular structures of polycyclic aromatics,heavy resins and asphaltene molecules were constructed.The number of α-,β-,γ-,and aromatic hydrogen atoms of the constructed average molecular structures fits well with the number of hydro-gen atoms derived from the experimental spectral data.展开更多
文摘Controlling catalytic activities through surface strain engineering remains a hot topic in electrocatalysis studies.Herein,ab initio molecular dynamics(AIMD)simulation associated with free energy sampling technology were performed to study the energetics of the key step of producing C2 products in electrocatalytic reduction of CO or CO_(2),i.e.CO dimerization,on strained Cu(100)with an explicit aqueous solvent model.It is worth mentioning that when compressive strain reaches a certain extent,the surface of Cu(100)will undergo reconstruction.We showed that,from tensile to compressive strain,the free energy barrier of CO dimerization decreased,suggesting that the activity of CO dimerization increases.It was also found that some of the reconstructed surfaces showing the lowest free energy barriers but might be less stable can be stabilized in the presence of adsorbed O or CO.Upon detailed quantitative analysis on the charges of surface Cu atoms,we found that the free energy barriers were strongly correlated with the charge of Cu atoms where the OCCO intermediate adsorbs.When the surfaces structures of Cu(100)were altered under compressive strain,the electronic structure of surface Cu atoms was monitored and thus the activity of electrocatalytic CO dimerization can be tuned.
文摘The manuscript deals with the possibility of application of collective behavior of quantum particles to realize the quantum calculation procedure. The above collective behavior is likely resulted from interelectron correlations, characteristic for strongly correlated systems containing atoms with unoccupied 3d-, 4f- and 5f- shells. Among such systems can be the heterospin systems, complexes of paramagnetic ions of transition metals with organic radicals, because for such objects, spin-spin interaction between unpaired electron spins of different paramagnetic centers is typical. To apply the aforementioned possibility for the organization of real quantum calculations, it is necessary to synthesize such paramagnetic molecules (paramagnetic clusters), where the entangled states will be realized naturally by self-organization of atoms incorporated in these molecules, i.e., without additional external effect of q-bits on the system. The specified self-organization may be due to intramolecular processes and, in particular, intramolecular rearrangement called valence tautomerism, which leads to heterogeneous magnetic states, i.e., to phase layering in paramagnetic cluster owing to interelectron correlations. The states realized during the phase layering can be used for coding the digits. Since such states correspond to specific structures of para-magnetic molecule, they can exist as much as long under certain conditions. In turn, it means that the account of the interelectron correlations, which take place in strongly correlated compounds, allows (at least, in principle) one to create elementary quantum bit of the information capable of modeling the elementary logical operations. Creation of a network of such quantum bits combined in a certain sequence should be considered as a practical step on a way to experimental realization of the idea of quantum computer creation. The group consisting of three quantum points can make the basis of quantum computer. In such a gate, quantum points can be connected via the interaction modeled by spin-spin interaction, characteristic for ABX system in NMR spectroscopy. The tunnel effect, which can be easily realized and controlled, can act as an indicator of bonding in such a block. The calculation procedure can be organized assuming that the initial state of the group corresponds to 1. Infringement of such a state indicates to zero (or, on the contrary). Thus, the calculation in the binary system becomes organized. The creation of a network on the basis of combination of such processors in certain sequence should be considered as a practical step on a way to experimental realization of the idea of the quantum computer creation.
文摘A study of the influence of magnetic field on the tautomerism, the authors proposed a new method for predicting possible new intra- and intermolecular rearrangements due to tautomerism. The authors have proposed a general mechanism of possible rearrangements and tautomerism.
基金the funding of the National Basic Research Program of China (Grant No.2006CB202505)
文摘The chemical structure of heavy oil fractions obtained by liquid-solid adsorption chromatography was character-ized by 1 H nuclear magnetic resonance and X-ray diffraction.The molecular weight and molecular formula of asphaltene molecules were estimated by combining 1 H nuclear magnetic resonance and X-ray diffraction analyses,and were also ob-tained from vapor pressure osmometry and elemental analysis.Heteroatoms,such as S,N,and O atoms,were considered in the construction of average molecular structure of heavy oils.Two important structural parameters were proposed,including the number of alkyl chain substituents to aromatic rings and the number of total rings with heteroatoms.Ultimately,the av-erage molecular structures of polycyclic aromatics,heavy resins and asphaltene molecules were constructed.The number of α-,β-,γ-,and aromatic hydrogen atoms of the constructed average molecular structures fits well with the number of hydro-gen atoms derived from the experimental spectral data.