期刊文献+
共找到5,833篇文章
< 1 2 250 >
每页显示 20 50 100
最大散度差分类器及其在文本分类中的应用 被引量:8
1
作者 宋枫溪 刘树海 +1 位作者 杨静宇 夏赛飞 《计算机工程》 EI CAS CSCD 北大核心 2005年第5期8-10,50,共4页
提出的最大散度差分类器是在修正Fisher线性鉴别准则的基础上建立起来的,它与Rocchio和SVM分类器有着十分密切的联系。在国际标准语料库20Newsgroups上进行的仿真实验结果表明,最大散度差分类器具有良好的文本分类性能,其正确识别率明... 提出的最大散度差分类器是在修正Fisher线性鉴别准则的基础上建立起来的,它与Rocchio和SVM分类器有着十分密切的联系。在国际标准语料库20Newsgroups上进行的仿真实验结果表明,最大散度差分类器具有良好的文本分类性能,其正确识别率明显高于NaiveBayes和Rocchio,与SVM相当。 展开更多
关键词 最大散度差分类器 NAIVE Baycs分类器 Rocchio分类器 SVM分类器 文本分类
下载PDF
基于同伴辅助学习分类器的部分域自适应方法 被引量:1
2
作者 邱春红 邵晓根 《计算机应用与软件》 北大核心 2024年第1期168-176,共9页
为了解决传统方法忽略分类器转移场景,进一步减轻负转移,提出一种基于同伴辅助学习分类器的部分域自适应方法。提出一个软加权最大均方差来减轻源异常域和目标域之间的负迁移,使得源共享域和目标域的特征分布在特征空间中是一致的;引入... 为了解决传统方法忽略分类器转移场景,进一步减轻负转移,提出一种基于同伴辅助学习分类器的部分域自适应方法。提出一个软加权最大均方差来减轻源异常域和目标域之间的负迁移,使得源共享域和目标域的特征分布在特征空间中是一致的;引入一种同伴辅助学习方法,减轻特定目标学习分类器的过度拟合问题。在三个数据集上的实验结果证明该方法不仅减轻了负迁移,而且解决了分类器移位问题。 展开更多
关键词 部分域自适应 负转移 分类器 同伴辅助学习
下载PDF
引入激活扩散的类分布关系近邻分类器
3
作者 董飒 欧阳若川 +4 位作者 徐海啸 刘杰 刘大有 李婷婷 王鑫禄 《吉林大学学报(理学版)》 CAS 北大核心 2024年第4期915-922,共8页
针对同质性关系分类器基于一阶Markov假设简化处理的局限性,在类分布关系近邻分类器构建类向量和参考向量时,引入局部图排序激活扩散方法,并结合松弛标注的协作推理方法,通过适当扩大分类时邻居节点的范围增加网络数据中待分类节点的同... 针对同质性关系分类器基于一阶Markov假设简化处理的局限性,在类分布关系近邻分类器构建类向量和参考向量时,引入局部图排序激活扩散方法,并结合松弛标注的协作推理方法,通过适当扩大分类时邻居节点的范围增加网络数据中待分类节点的同质性,从而降低分类错误率.对比实验结果表明,该方法扩大了待分类节点的邻域,在网络数据上分类精度较好. 展开更多
关键词 人工智能 网络数据分类 激活扩散 类分布关系近邻分类器 协作推理
下载PDF
基于多层感知分类器的皮革图像缺陷识别研究 被引量:1
4
作者 马静 《中国皮革》 CAS 2024年第8期40-46,共7页
针对传统皮革图像缺陷识别准确率和识别效率不高的问题,提出一种改进多层感知分类器的皮革图像缺陷识别方法。首先,以多层感知分类器作为基础网络模型,对其结构进行优化,并选择适宜的激活函数、分类器和权值与偏置更新方法;然后,搭建一... 针对传统皮革图像缺陷识别准确率和识别效率不高的问题,提出一种改进多层感知分类器的皮革图像缺陷识别方法。首先,以多层感知分类器作为基础网络模型,对其结构进行优化,并选择适宜的激活函数、分类器和权值与偏置更新方法;然后,搭建一个基于改进多层感知分类器的皮革图像缺陷识别模型;最后,提出一套皮革缺陷图像数据集构建方案,通过滑窗裁剪、样本标注、图像增广等获得4类皮革缺陷图像样本,并将该数据集输入至搭建缺陷识别模型中进行缺陷识别。试验结果表明,本模型对孔洞缺陷、划痕缺陷、针眼缺陷和无缺陷4种故障样本的平均精确率、召回率、准确率和F1值分别为96.97%、96.52%、94.99%和96.14,且本模型进行缺陷识别所用时长仅为3.56 s。相较于经典卷积神经网络VGG16、残差网络ResNet10和支持向量机SVM,本模型对皮革图像不同样本的故障识别准确率更高,识别时间更短。由此说明,本模型能够提升皮革图像缺陷识别准确率和效率,模型性能具备优越性和有效性。 展开更多
关键词 多层感知分类器 皮革图像 图像增广 权值与偏置更新 缺陷识别
下载PDF
基于集成神经网络的类风湿关节炎中医证候分类器研究
5
作者 杨晶东 江彪 +3 位作者 李熠伟 姜泉 韩曼 宋梦歌 《海军军医大学学报》 CAS CSCD 北大核心 2024年第3期305-319,共15页
目的构建一种集成神经网络模型实现类风湿关节炎(RA)中医证候分类,并探究其中的特征重要性和风险因素。方法针对基于人工智能技术的RA中医证候多标签分类中存在的标签关联性差、泛化性能低等问题,提出一种集成神经网络模型——集成神经... 目的构建一种集成神经网络模型实现类风湿关节炎(RA)中医证候分类,并探究其中的特征重要性和风险因素。方法针对基于人工智能技术的RA中医证候多标签分类中存在的标签关联性差、泛化性能低等问题,提出一种集成神经网络模型——集成神经网络链(FEN)。FEN模型采用一种基于深度神经网络的特征提取基分类器提取临床RA多标签样本的深层特征,增强RA特征区分度;根据协方差理论衡量标签相关性,调节分类器链的输入空间,减少RA错误信息传播和冗余度;并采用集成学习方法减小分类器链中不合理标签序列对RA特征分类的影响。此外,分析了RA中医证候主证和兼证的特征贡献度,挖掘其潜在的风险因素。结果FEN模型的10折交叉验证性能参数汉明损失、1-错误率、准确度和F1值分别为0.0036、0.0248、97.52%、99.18%。与7种典型多标签分类器(分类器链、标签幂集、二进制关联、随机k-标签集、多标签K最近邻、集成分类器链和集成二进制关联)相比,FEN模型具有较好的分类性能。特征贡献度分析提示,主症和次症特征均可作为RA中医证候分类的重要指标,是影响主证和兼证分类的主要因素。结论基于集成神经网络模型的RA中医证候分类器具有较高的分类精度和效率,对于RA的临床诊断和治疗具有重要参考价值。 展开更多
关键词 类风湿关节炎 多标签学习 神经网络 分类器 集成学习
下载PDF
基于极化SAR梯度和复Wishart分类器的舰船检测
6
作者 殷君君 罗嘉豪 +2 位作者 李响 代晓康 杨健 《雷达学报(中英文)》 EI CSCD 北大核心 2024年第2期396-410,共15页
舰船检测是极化SAR系统的重要应用之一。现有的舰船检测方法容易受到旁瓣泄露的干扰,使得舰船目标的形态难以提取,导致检测结果不符合真实情况。此外,在舰船过于密集、尺度不一致的情况下,相邻舰船由于旁瓣的影响有时会被认为是单个目标... 舰船检测是极化SAR系统的重要应用之一。现有的舰船检测方法容易受到旁瓣泄露的干扰,使得舰船目标的形态难以提取,导致检测结果不符合真实情况。此外,在舰船过于密集、尺度不一致的情况下,相邻舰船由于旁瓣的影响有时会被认为是单个目标,从而造成漏检。针对这些问题,该文提出一种基于极化SAR梯度和复Wishart分类器的舰船检测方法。首先,将似然比检验(LRT)梯度引入对数比值梯度框架,使其适用于极化SAR数据;基于LRT梯度图进行恒虚警(CFAR)检测,提取舰船的边缘信息,消除伪影的同时抑制强旁瓣对舰船精细轮廓提取的影响。其次,利用复Wishart迭代分类器对舰船强散射部分进行检测,可排除大部分的杂波干扰且保持舰船形态细节。最后,将二者信息融合,从而可以保持舰船形态细节的同时克服旁瓣和伪信号的虚警。该文在3幅来自ALOS-2卫星的极化SAR图像上进行了对比实验,实验表明与其他方法相比,该文所提算法具有更少的虚警和漏检,且能够有效克服旁瓣泄露,保持舰船形态细节。 展开更多
关键词 舰船检测 极化合成孔径雷达 比值梯度 似然比检验 复Wishart分类器
下载PDF
基于ER Rule的多分类器汽车评论情感分类研究
7
作者 周谧 周雅婧 +1 位作者 贺洋 方必和 《运筹与管理》 CSSCI CSCD 北大核心 2024年第5期161-168,共8页
该文针对汽车评论语料的情感二分类问题,提出一种基于证据推理规则的多分类器融合的情感分类方法。在情感特征构建方面,通过实验对比不同特征模型对分类结果的影响,并改进传统的TFIDF权重计算方法。同时,在此基础上使用ER Rule融合不同... 该文针对汽车评论语料的情感二分类问题,提出一种基于证据推理规则的多分类器融合的情感分类方法。在情感特征构建方面,通过实验对比不同特征模型对分类结果的影响,并改进传统的TFIDF权重计算方法。同时,在此基础上使用ER Rule融合不同分类器进行文本情感极性分析,并考虑各分类器的权重和可靠度。最后,爬取汽车网站上的评论数据对上述方法进行测试,并用公开的中文酒店评论语料数据进行了验证,结果表明该方法能够有效集成不同分类器的优点,与传统机器学习分类算法相比,其结果在Recall,F1值和Accuracy三个指标上得到了提高,与目前流行的深度学习算法和集成学习算法相比,其结果总体占优。 展开更多
关键词 证据推理规则 分类器融合 TFIDF权重 深度学习算法 集成学习算法
下载PDF
基于成果导向教育的分类器实验教学设计探索
8
作者 昝风彪 陈达 +1 位作者 刘昕 孟轩 《实验室研究与探索》 CAS 北大核心 2024年第1期165-168,共4页
探索一种区别于传统教育的新型OBE教育模式。以学生自身兴趣爱好为导向,引用经典课题实践案例,并将其分解成不同难度题型,引导不同基础学生用科学的方法实现基于Python编译器的分类器仿真实验模型,让每一个学生能够得到最大程度的学习... 探索一种区别于传统教育的新型OBE教育模式。以学生自身兴趣爱好为导向,引用经典课题实践案例,并将其分解成不同难度题型,引导不同基础学生用科学的方法实现基于Python编译器的分类器仿真实验模型,让每一个学生能够得到最大程度的学习效率。通过此互动式、开放性的课堂教学,不仅充分激发了每一个学生的学习能动性,也使得教师通过课堂氛围灵活的分配教学计划以获得更好的教学体验,更好地完成教学成绩。 展开更多
关键词 PYTHON 分类器 成果导向教育 人才培养
下载PDF
一种基于多分类器和证据理论融合的水质分类方法
9
作者 项新建 颜超龙 +2 位作者 费正顺 郑永平 李可晗 《人民黄河》 CAS 北大核心 2024年第1期109-113,共5页
针对单分类器对不同水质类别识别不均衡、水质分类准确率较低、适应性较差的问题,提出一种基于多分类器和证据理论融合的水质分类方法。选取深度神经网络分类器、改进支持向量机分类器和贝叶斯分类器3种分类器,通过全概率公式构建信度函... 针对单分类器对不同水质类别识别不均衡、水质分类准确率较低、适应性较差的问题,提出一种基于多分类器和证据理论融合的水质分类方法。选取深度神经网络分类器、改进支持向量机分类器和贝叶斯分类器3种分类器,通过全概率公式构建信度函数,基于证据理论对信度函数进行融合,获得多分类器融合模型。从国家地表水水质自动站发布的2022年3月1—22日水质数据中选取3 558条数据为样本集,采用DNN水质分类模型、PSO-SVM水质分类模型、贝叶斯水质分类模型和多分类器融合模型对待测样本进行测试。结果表明:多分类器融合模型对水质类别判定的平均准确率、精确率、召回率和F1值分别为94.2%、93.8%、94.2%和94.0%。相较于DNN水质分类模型、PSO-SVM水质分类模型、贝叶斯水质分类模型,多分类器融合模型准确率分别提高5.6%、9.8%和13.6%,精确率分别提高5.2%、10.0%和10.9%,召回率分别提高5.6%、9.8%和13.6%,F1值分别提高5.4%、10.2%和12.3%,多分类器融合模型在水质分类方面的准确性和适应性更高。 展开更多
关键词 水质分类 分类器 神经网络 证据理论融合
下载PDF
基于Hamming距离和量子搜索算法的联想分类器设计
10
作者 肖红 刘新彤 《吉林大学学报(理学版)》 CAS 北大核心 2024年第6期1426-1438,共13页
针对现有联想分类器不能存储重复样本的问题,提出一种基于Hamming距离和量子搜索算法的量子联想分类器设计方法,并给出联想分类器存储和分类的线路图.该方法需提前准备5组量子比特,分别对Hamming距离、输入样本、模式样本、类别和序号... 针对现有联想分类器不能存储重复样本的问题,提出一种基于Hamming距离和量子搜索算法的量子联想分类器设计方法,并给出联想分类器存储和分类的线路图.该方法需提前准备5组量子比特,分别对Hamming距离、输入样本、模式样本、类别和序号进行编码.首先,根据样本总体N,计算联想分类器所需的量子位数,再利用量子旋转门和Hadamard门将初态为|0〉的量子位旋转为恰好包含N个基态的均衡叠加态;其次,根据待存储样本的类别和值,将剩余两组初始状态为|0〉的量子位通过可控操作转换为相应的量子基态;最后,基于量子最小搜索的分类方法,计算输入样本与所有存储样本之间的Ha mming距离,再使用固定相位Grover量子搜索算法搜索这些Hamming距离的最小值,最小值对应存储样本的类别即为输入样本的类别,具体的分类结果可通过测量寄存器中的量子态得到. 展开更多
关键词 量子联想分类器 均衡叠加态 HAMMING距离 量子最小搜索
下载PDF
基于改进分类器动态选择算法的滚珠丝杠副状态识别
11
作者 文娟 《高技术通讯》 CAS 北大核心 2024年第4期396-405,共10页
为提升滚珠丝杠副的性能状态识别精度,提出一种改进的分类器动态选择算法。该算法借助邻域成分分析(NCA),准确并自适应地定义测试样本的邻域,无需选择距离度量方式,从而更加准确地衡量多分类器系统中各子分类器对于测试样本进行正确分... 为提升滚珠丝杠副的性能状态识别精度,提出一种改进的分类器动态选择算法。该算法借助邻域成分分析(NCA),准确并自适应地定义测试样本的邻域,无需选择距离度量方式,从而更加准确地衡量多分类器系统中各子分类器对于测试样本进行正确分类的潜力,解决了传统分类器动态选择算法精度受限于距离度量方式选择是否合适的问题。将所提出的分类器动态选择算法应用于滚珠丝杠副状态识别中,首先利用AdaBoost算法离线训练反向传播(BP)神经网络集合,然后依据实时信号特征,采用改进的分类器动态选择算法从分类器集合中选取最合适的子分类器进行状态鉴定,从而实现更好的识别效果。实验结果表明,提出方法的状态识别准确率能够达到97.22%,高于BP神经网络、AdaBoost与传统分类器动态选择算法,且对于不同的性能状态均有较高的识别精度。 展开更多
关键词 分类器动态选择 邻域成分分析(NCA) 状态识别 滚珠丝杠副 分类器系统
下载PDF
深度超圆盘分类器及其在旋转机械故障诊断中的应用 被引量:1
12
作者 杨岸端 吴占涛 +1 位作者 袁毅 杨宇 《噪声与振动控制》 CSCD 北大核心 2024年第2期95-101,207,共8页
几何模型分类器具有坚实的几何统计基础和良好的泛化能力,因此在旋转机械故障诊断中取得了较高的分类精度。与仿射包和凸包相比,超圆盘(Hyperdisk,HD)对样本分布区域的估计更加合理。但超圆盘模型属于浅层学习模型,对复杂函数的表示能... 几何模型分类器具有坚实的几何统计基础和良好的泛化能力,因此在旋转机械故障诊断中取得了较高的分类精度。与仿射包和凸包相比,超圆盘(Hyperdisk,HD)对样本分布区域的估计更加合理。但超圆盘模型属于浅层学习模型,对复杂函数的表示能力有限,存在学习能力和泛化能力差等缺点。针对这个问题提出一种深度超圆盘分类器(Deep Hyperdisk Large Margin Classifier,DHD),该方法通过模块叠加的方式将超圆盘分类器深度化,利用特征提取公式从每层模块的输入样本中自主提取新的特征值,并将其应用在下一层模块的训练学习中。将所提方法应用到旋转机械故障诊断当中,实验结果表明该方法对故障样本的分类准确率高于其他模型算法,且对不均衡样本和强噪声背景下的故障样本均具有良好的分类能力。 展开更多
关键词 故障诊断 深度超圆盘分类器 深度学习 旋转机械
下载PDF
最小距离分类器的改进算法——加权最小距离分类器 被引量:30
13
作者 任靖 李春平 《计算机应用》 CSCD 北大核心 2005年第5期992-994,共3页
最小距离分类器是一种简单而有效的分类方法。为了提高最小距离分类器的分类性能,主要的改进方法是选择更有效的距离度量。通过分析多重限制分类器和决策树分类器的分类原则,提出了基于标准化欧式距离的加权最小距离分类器。该分类器通... 最小距离分类器是一种简单而有效的分类方法。为了提高最小距离分类器的分类性能,主要的改进方法是选择更有效的距离度量。通过分析多重限制分类器和决策树分类器的分类原则,提出了基于标准化欧式距离的加权最小距离分类器。该分类器通过对标称型和字符串型属性的距离的加权定义,以及增加属性值的范围约束,扩大了最小标准化欧式距离分类器的适用范围,同时提高了其分类准确率。实验结果表明,加权最小距离分类器具有较高的分类准确率。 展开更多
关键词 最小距离分类器 欧式距离 多重限制分类器 决策树分类器
下载PDF
基于贝叶斯网络分类器的雷达辐射源识别方法 被引量:9
14
作者 郭小宾 王壮 胡卫东 《火力与指挥控制》 CSCD 北大核心 2006年第2期36-39,共4页
雷达辐射源识别是电子对抗中的重要组成部分。贝叶斯网络分类器建立在坚实的理论基础之上,具有较为优秀的分类性能,而且能够有效地处理不确定性问题,重点研究了如何利用贝叶斯网络分类器进行雷达辐射源识别,并通过仿真实验对朴素贝叶斯... 雷达辐射源识别是电子对抗中的重要组成部分。贝叶斯网络分类器建立在坚实的理论基础之上,具有较为优秀的分类性能,而且能够有效地处理不确定性问题,重点研究了如何利用贝叶斯网络分类器进行雷达辐射源识别,并通过仿真实验对朴素贝叶斯分类器及其扩展方法进行了分析比较。实验结果表明,与基于概率近似准则的方法相比,基于分类准确率提高准则的扩展树生成方法具有更为优秀的分类性能。 展开更多
关键词 雷达辐射源识别 贝叶斯网络分类器 朴素贝叶斯分类器 树扩展朴素贝叶斯分类器 超级父节点方法
下载PDF
基于多期动态增强CT影像组学特征和多分类器分层融合模型预测肝细胞癌的微血管侵犯 被引量:2
15
作者 钟伟雄 梁芳蓉 +1 位作者 杨蕊梦 甄鑫 《南方医科大学学报》 CAS CSCD 北大核心 2024年第2期260-269,共10页
目的探讨预测肝细胞癌(HCC)患者是否发生微血管侵犯(MVI)而提出了一种基于多期动态增强CT(DCE-CT)影像组学特征和多分类器分层融合的预测模型。方法回顾性收集2016年1月~2020年4月广州市第一人民医院111例经病理证实的HCC患者的术前DCE... 目的探讨预测肝细胞癌(HCC)患者是否发生微血管侵犯(MVI)而提出了一种基于多期动态增强CT(DCE-CT)影像组学特征和多分类器分层融合的预测模型。方法回顾性收集2016年1月~2020年4月广州市第一人民医院111例经病理证实的HCC患者的术前DCE-CT图像。分别在早期动脉期(EAP)、晚期动脉期(LAP)、门静脉期(PVP)和平衡期(EP)进行了感兴趣容积(VOI)的勾画,并从中提取出这4个期相的影像组学特征。利用经过筛选后的特征子集分别训练7种基于不同算法的分类器,得到不同期相下的多个基分类器。然后采用一种新型的基于多准则决策的权重分配算法,按照分层融合的策略依次对同一期相下多个基分类器以及提取了不同期相信息后的模型进行融合,最终得到基于多期DCE-CT影像组学特征和多分类器分层融合预测模型。采用五折交叉验证的方法和ROC曲线下面积(AUC)、准确率(ACC)、灵敏度(SEN)和特异度(SPE)4种评价指标来定量评价所提出的预测模型的性能。提出的模型与使用单一期相或多个不同期相的融合模型、基于单期相单分类器的模型、不同基分类器多样性的模型以及八种基于其他集成方法的分类器模型进行定量比较。结果提出的模型预测HCCMVI的性能在融合4个期相及7种分类器后达到最优,AUC、ACC、SEN和SPE分别为:0.828、0.766、0.877、0.648。对比实验显示,所提出的模型性能优于基于单期相单分类器的模型以及其他集成模型。结论基于多期DCE-CT影像组学特征和多分类器分层融合模型能够很好地预测HCC的MVI情况,相比于其他模型具有较大的性能优势。 展开更多
关键词 肝细胞癌 微血管侵犯 动态增强计算机断层扫描 分类器 多准则决策
下载PDF
基于自适应距离度量的最小距离分类器集成 被引量:3
16
作者 郭亚琴 王正群 +1 位作者 乐晓容 王向东 《计算机应用》 CSCD 北大核心 2006年第7期1703-1705,共3页
提出了一种基于自适应距离度量的最小距离分类器集成方法,给出了个体分类器的生成方法。首先用Bootstrap技术对训练样本集进行可重复采样,生成若干个子样本集,应用生成的子样本集建立自适应距离度量模型,根据建立的模型对子样本集进行训... 提出了一种基于自适应距离度量的最小距离分类器集成方法,给出了个体分类器的生成方法。首先用Bootstrap技术对训练样本集进行可重复采样,生成若干个子样本集,应用生成的子样本集建立自适应距离度量模型,根据建立的模型对子样本集进行训练,生成个体分类器。在集成中,将结果用相对多数投票法集成最终的结论。采用UCI标准数据集实验,将该方法与已有方法进行了性能比较,结果表明基于自适应距离度量的最小距离分类器集成是最有效的。 展开更多
关键词 自适应距离度量 最小距离分类器 分类器集成 个体分类器 多数投票法
下载PDF
改进模糊推理分类器进行木材树种近红外光谱开集分类识别研究 被引量:1
17
作者 李振宇 赵鹏 王承琨 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第7期1868-1876,共9页
开集分类识别是近10多年来模式识别领域研究的热点,它能够识别训练集中已知类别的测试样本,同时还能够有效“拒识”未知类别的测试样本;这些未知类别样本不包含在训练集中。现有的开集分类识别算法主要是基于Support Vector Machine(SVM... 开集分类识别是近10多年来模式识别领域研究的热点,它能够识别训练集中已知类别的测试样本,同时还能够有效“拒识”未知类别的测试样本;这些未知类别样本不包含在训练集中。现有的开集分类识别算法主要是基于Support Vector Machine(SVM)和深度学习网络框架进行改进,并且主要应用在自然景物图像领域中;在光谱分析领域中还鲜有报道。将传统的闭集框架下的模糊推理分类器进行模型改进,提出了开集框架下的改进模糊推理分类器,并将其应用到木材树种近红外光谱分类识别中。首先,使用Flame-NIR近红外微型光谱仪采集木材样本横切面的近红外光谱曲线,采用Metric Learning算法进行光谱向量维度约简降维至4维(4D)。其次,改进闭集框架下的模糊推理分类器,根据模糊规则置信度和各维度隶属度概率的乘积构建Generalized Basic Probability Assignment(GBPA),再根据GBPA进行分类处理。在20个树种的具有不同的Openness指标下的近红外光谱数据集的分类识别对比实验表明,改进的开集模糊推理分类器(fuzzy reasoning classifier in an open set,FRCOS)优于现有的基于机器学习和深度学习的开集分类识别主流算法,具有较好的评价指标F-Score,Kappa系数及总体识别率。 展开更多
关键词 开集分类识别 木材树种识别 模糊推理分类器 近红外光谱分析
下载PDF
基于决策树和贝叶斯分类器相结合的组合分类器电器类型识别方法 被引量:2
18
作者 侯文浩 凌云 +1 位作者 徐敬成 黄文威 《新型工业化》 2018年第6期21-25,40,共6页
针对现阶段主流的电器负载识别技术中存在的识别手段单一、结构复杂、识别准确率不高等问题,提出一种以电器负载工作电流中的各次谐波作为识别特征,并基于决策树分类器以及贝叶斯分类器的新型组合分类器电器识别方法。通过大量实验得到... 针对现阶段主流的电器负载识别技术中存在的识别手段单一、结构复杂、识别准确率不高等问题,提出一种以电器负载工作电流中的各次谐波作为识别特征,并基于决策树分类器以及贝叶斯分类器的新型组合分类器电器识别方法。通过大量实验得到的数据分析结果表明,该方法思路明确,简单易行,同时识别精确度高,值得推广应用。 展开更多
关键词 负载识别 工作电流 贝叶斯分类器 决策树分类器 组合分类器
下载PDF
一种可用于肝癌呼气信号鉴别的改进AdaBoost级联分类器
19
作者 郝丽俊 朱耿 +1 位作者 黄钢 严加勇 《中国生物医学工程学报》 CAS CSCD 北大核心 2024年第2期162-172,共11页
为了降低呼气检测技术在肝癌筛查中的漏诊率,本研究设计一种改进的AdaBoost级联分类器,并将其应用于鉴别健康志愿者和肝癌患者的呼气信号。首先,对训练样本进行自助划分获得一组训练子集。基于该训练子集,先后利用不同的机器学习算法,采... 为了降低呼气检测技术在肝癌筛查中的漏诊率,本研究设计一种改进的AdaBoost级联分类器,并将其应用于鉴别健康志愿者和肝癌患者的呼气信号。首先,对训练样本进行自助划分获得一组训练子集。基于该训练子集,先后利用不同的机器学习算法,采用K折交叉训练和投票法得到多个子分类器;接着,将多个子分类器加权组合得到一个改进的AdaBoost分类器;然后,再次自助划分训练样本,以新的训练子集训练得到另一个AdaBoost分类器;最后,将两个AdaBoost分类器串联形成级联分类器。测试样本送入该级联分类器后,按照级联规则,潜在的异常样本将被反复筛查。以电子鼻采集到的120名志愿者的呼气信号的Relief优化特征集为训练样本,构建改进AdaBoost级联分类器,并对40例测试样本进行鉴别。结果表明,该级联分类器可有效区分出测试组中的肝癌患者和健康人的呼气信号,平均敏感性为93.42%,明显优于传统AdaBoost级联分类器,漏诊率显著降低。此外,该级联分类器的稳定性较好,精度的变异系数仅为3.95%。可见,改进AdaBoost级联分类器可有效提升分类器对肝癌呼气信号的检测能力,对实现基于呼气检测的肝癌无创普及性筛查技术的研究具有重要意义。 展开更多
关键词 肝癌呼气法检测 AdaBoost级联分类器 漏诊率 变异系数 Relief优化特征集
下载PDF
基于代价信息的二类分类器性能评估方法 被引量:1
20
作者 姜鹏 秦锋 罗慧 《计算机技术与发展》 2008年第12期63-66,共4页
基于ROC曲线的AUC评估方法能有效评估二类分类器的性能,但是该方法只能评估分类器的总体性能,对代价信息不敏感。基于AUC方法提出用AUCCH方法评估二类分类器性能,该方法在具体代价信息下能分辨出最优分类器,在代价信息未知时能分辨出潜... 基于ROC曲线的AUC评估方法能有效评估二类分类器的性能,但是该方法只能评估分类器的总体性能,对代价信息不敏感。基于AUC方法提出用AUCCH方法评估二类分类器性能,该方法在具体代价信息下能分辨出最优分类器,在代价信息未知时能分辨出潜在最优分类器。在MBNC实验平台下编程实现,通过对AUC方法和AUCCH方法实验结果的比较,表明该方法具有有效性和健壮性。 展开更多
关键词 AUC 二类分类器 代价信息 AUOCH 最优分类器 潜在最优分类器
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部