采用差热-热重分析法对不同反应条件下的制药污泥热解特性及动力学规律展开研究。结果表明:制药污泥的热解过程经历失水、有机物分解和碳化3个阶段;制药污泥在不同升温速率(5、10和20℃/min)下的TG(热重分析)和DTG(TG的一次微分)曲线的...采用差热-热重分析法对不同反应条件下的制药污泥热解特性及动力学规律展开研究。结果表明:制药污泥的热解过程经历失水、有机物分解和碳化3个阶段;制药污泥在不同升温速率(5、10和20℃/min)下的TG(热重分析)和DTG(TG的一次微分)曲线的趋势大致相同,但是随着升温速率的增加,TG和DTG曲线向高温区移动。通过FLynnWall-Ozawa法和atava-esták法对污泥主要反应阶段进行热解动力学分析,得出当转化率为0.9时,活化能最大为150.75 kJ/mol;当转化率为0.6时,活化能最小为68.93 k J/mol;污泥的热解反应在280~360℃时的活化能为85.67kJ/mol,最概然机理函数为[-ln(1-α)]~3;在640~700℃时的活化能150.42 kJ/mol,最概然机理函数为(1-α)^(-1)-1。展开更多
文摘采用差热-热重分析法对不同反应条件下的制药污泥热解特性及动力学规律展开研究。结果表明:制药污泥的热解过程经历失水、有机物分解和碳化3个阶段;制药污泥在不同升温速率(5、10和20℃/min)下的TG(热重分析)和DTG(TG的一次微分)曲线的趋势大致相同,但是随着升温速率的增加,TG和DTG曲线向高温区移动。通过FLynnWall-Ozawa法和atava-esták法对污泥主要反应阶段进行热解动力学分析,得出当转化率为0.9时,活化能最大为150.75 kJ/mol;当转化率为0.6时,活化能最小为68.93 k J/mol;污泥的热解反应在280~360℃时的活化能为85.67kJ/mol,最概然机理函数为[-ln(1-α)]~3;在640~700℃时的活化能150.42 kJ/mol,最概然机理函数为(1-α)^(-1)-1。