We study the dynamics evolution of a two-qubit Heisenberg XXX spin chain under a time-dependent rotating magnetic field. Based on the algebraic structure of the non-autonomous system, the exact solution of the Schrodi...We study the dynamics evolution of a two-qubit Heisenberg XXX spin chain under a time-dependent rotating magnetic field. Based on the algebraic structure of the non-autonomous system, the exact solution of the Schrodinger equation is obtained by using the method of algebraic dynamics. Based on the time-dependent analytical solution, we further study the entanglement evolution between the two coupled spins for different initial states, and find that the entanglement is determined by the coefficients of the initial state and the coupling constant J of the system.展开更多
Effects of temperature and heating rate on the mechanical properties of the tensile specimens of magnesium alloy AZ31 were experimentally investigated using a Gleeble-1500 thermo-mechanical material testing system.The...Effects of temperature and heating rate on the mechanical properties of the tensile specimens of magnesium alloy AZ31 were experimentally investigated using a Gleeble-1500 thermo-mechanical material testing system.The metallurgraphs of the fracture section of the specimens were also experimentally observed and analyzed for exploring their failure mechanism under different temperatures and heating rates.The results show that the higher the temperature,the lower the ultimate strength of the specimens.And the higher the heating rate,the higher the ultimate strength of the specimens.The high temperatures and high heating rates will induce microvoids in the specimens which make the specimens failure under relatively low loads.展开更多
The response and failure of magnesium alloy AZ31 specimens subjected to different pre-loaded-stress levels and heating rates were investigated with a Gleeble-1500 thermo-mechanical material testing system.It is found ...The response and failure of magnesium alloy AZ31 specimens subjected to different pre-loaded-stress levels and heating rates were investigated with a Gleeble-1500 thermo-mechanical material testing system.It is found that the increases of either pre-loaded stresses or heating-rates decrease the failure temperatures of the specimens.The metallographs of the tested specimens were also observed.It is shown that the high heating-rate may cause stronger local thermal inconsistency,which remarkably increases the microdefects and reduces the macroscopic mechanical properties of the material.展开更多
基金National Natural Science Foundation of China under Grant No.10374068the Doctoral Education Fund of the Ministry of Education of China under Grant No.20050610011
文摘We study the dynamics evolution of a two-qubit Heisenberg XXX spin chain under a time-dependent rotating magnetic field. Based on the algebraic structure of the non-autonomous system, the exact solution of the Schrodinger equation is obtained by using the method of algebraic dynamics. Based on the time-dependent analytical solution, we further study the entanglement evolution between the two coupled spins for different initial states, and find that the entanglement is determined by the coefficients of the initial state and the coupling constant J of the system.
基金Projects(10872221,50621403)supported by the National Natural Science Foundation of China
文摘Effects of temperature and heating rate on the mechanical properties of the tensile specimens of magnesium alloy AZ31 were experimentally investigated using a Gleeble-1500 thermo-mechanical material testing system.The metallurgraphs of the fracture section of the specimens were also experimentally observed and analyzed for exploring their failure mechanism under different temperatures and heating rates.The results show that the higher the temperature,the lower the ultimate strength of the specimens.And the higher the heating rate,the higher the ultimate strength of the specimens.The high temperatures and high heating rates will induce microvoids in the specimens which make the specimens failure under relatively low loads.
基金Projects(10872221,50621403)supported by the National Natural Science Foundation of China
文摘The response and failure of magnesium alloy AZ31 specimens subjected to different pre-loaded-stress levels and heating rates were investigated with a Gleeble-1500 thermo-mechanical material testing system.It is found that the increases of either pre-loaded stresses or heating-rates decrease the failure temperatures of the specimens.The metallographs of the tested specimens were also observed.It is shown that the high heating-rate may cause stronger local thermal inconsistency,which remarkably increases the microdefects and reduces the macroscopic mechanical properties of the material.