随着虚拟专用网(VPN)技术的广泛应用,实时VPN流量识别已成为网络管理和安全维护中越来越重要的任务.加密流量使得从原始流量中提取特征变得极具挑战性,现有的VPN流量识别方法通常存在高维数据特征提取困难的问题.提出了一种在DAE(Denois...随着虚拟专用网(VPN)技术的广泛应用,实时VPN流量识别已成为网络管理和安全维护中越来越重要的任务.加密流量使得从原始流量中提取特征变得极具挑战性,现有的VPN流量识别方法通常存在高维数据特征提取困难的问题.提出了一种在DAE(Denoising Auto-Encoder,降噪自编码器)的网络结构基础上加入了LSTM(Long Short Term Memory,长短时记忆)的模型,将深度学习相关技术融入加密流量识别技术之中,使一直存在的难以处理高维数据以及特征提取等问题得到解决.展开更多
网络流量识别是网络管理和安全服务的基础.随着互联网的不断扩展及其复杂性的增加,传统基于规则的识别方法或流行为特征的方法正在面临着巨大挑战.受自然语言处理(Nature Language Processing, NLP)启发,本文提出了一种多特征融合的加...网络流量识别是网络管理和安全服务的基础.随着互联网的不断扩展及其复杂性的增加,传统基于规则的识别方法或流行为特征的方法正在面临着巨大挑战.受自然语言处理(Nature Language Processing, NLP)启发,本文提出了一种多特征融合的加密流量快速分类方法 .该方法通过融合数据包和字节序列特征来完成网络流的特征表示,采用双元字节编码将所选特征扩展为双字节序列,增加了字节的上下文语义特征;通过与数据包特征处理相适应的池化方法来最大限度保留数据包的特征信息,从而使所提模型具有更强的抗噪能力和更精确的分类能力.本文方法分别在ISCX-2016和一个包含66个热门应用程序的私有数据集(ETD66)上进行验证,并与其他模型展开比较.结果表明:本文所提方法在ISCX-2016及ETD66上的测试精度和性能都明显优于其他流量分类模型,分别取得了98.2%和98.6%的识别准确率,从而证明了所提方法的特征提取能力和强泛化能力.展开更多
文摘随着虚拟专用网(VPN)技术的广泛应用,实时VPN流量识别已成为网络管理和安全维护中越来越重要的任务.加密流量使得从原始流量中提取特征变得极具挑战性,现有的VPN流量识别方法通常存在高维数据特征提取困难的问题.提出了一种在DAE(Denoising Auto-Encoder,降噪自编码器)的网络结构基础上加入了LSTM(Long Short Term Memory,长短时记忆)的模型,将深度学习相关技术融入加密流量识别技术之中,使一直存在的难以处理高维数据以及特征提取等问题得到解决.
文摘网络流量识别是网络管理和安全服务的基础.随着互联网的不断扩展及其复杂性的增加,传统基于规则的识别方法或流行为特征的方法正在面临着巨大挑战.受自然语言处理(Nature Language Processing, NLP)启发,本文提出了一种多特征融合的加密流量快速分类方法 .该方法通过融合数据包和字节序列特征来完成网络流的特征表示,采用双元字节编码将所选特征扩展为双字节序列,增加了字节的上下文语义特征;通过与数据包特征处理相适应的池化方法来最大限度保留数据包的特征信息,从而使所提模型具有更强的抗噪能力和更精确的分类能力.本文方法分别在ISCX-2016和一个包含66个热门应用程序的私有数据集(ETD66)上进行验证,并与其他模型展开比较.结果表明:本文所提方法在ISCX-2016及ETD66上的测试精度和性能都明显优于其他流量分类模型,分别取得了98.2%和98.6%的识别准确率,从而证明了所提方法的特征提取能力和强泛化能力.