选取IEEE-57节点测试系统进行振荡模式、阻尼特性和电力系统稳定器(power system stabilizer,PSS)投退分析,校核系统PSS配置的合理性及抑制低频振荡的效果。基于自适应加速粒子群算法分3步对测试系统进行PSS参数协同优化和配置,第一步...选取IEEE-57节点测试系统进行振荡模式、阻尼特性和电力系统稳定器(power system stabilizer,PSS)投退分析,校核系统PSS配置的合理性及抑制低频振荡的效果。基于自适应加速粒子群算法分3步对测试系统进行PSS参数协同优化和配置,第一步对15号机PSS参数进行单机优化,对比系统阻尼;第二步对18号机进行PSS配置及其参数优化,提高测试系统阻尼;第三步对15、18号两机进行PSS参数协同优化,获得更高阻尼特性的参数。利用小干扰稳定时域仿真和普罗尼算法(Prony分析),验证得协同优化的PSS参数阻尼效果更好,系统动态安全稳定水平更高且PSS协同优化及配置方法有效可行。展开更多
针对VPMCD中模型选择方法的不合理和小样本多分类时识别率降低的缺陷,结合动态加速常数协同惯性权重的粒子群(Particle swarm optimization with dynamic accelerating constant and coordinating with inertia weight,PSODACCIW)算法...针对VPMCD中模型选择方法的不合理和小样本多分类时识别率降低的缺陷,结合动态加速常数协同惯性权重的粒子群(Particle swarm optimization with dynamic accelerating constant and coordinating with inertia weight,PSODACCIW)算法的全局优化能力和加权融合理论,提出基于PSODACCIW-VPMCD的滚动轴承智能检测方法。首先对样本提取特征变量,然后采用PSODACCIW算法优化诊断融合权值矩阵,最后对滚动轴承的故障类型和工作状态进行分类和识别。实验结果表明,该方法能够有效地应用于滚动轴承的智能检测中。展开更多
To deal with the demerits of constriction particle swarm optimization(CPSO), such as relapsing into local optima, slow convergence velocity, a modified CPSO algorithm is proposed by improving the velocity update formu...To deal with the demerits of constriction particle swarm optimization(CPSO), such as relapsing into local optima, slow convergence velocity, a modified CPSO algorithm is proposed by improving the velocity update formula of CPSO. The random velocity operator from local optima to global optima is added into the velocity update formula of CPSO to accelerate the convergence speed of the particles to the global optima and reduce the likelihood of being trapped into local optima. Finally the convergence of the algorithm is verified by calculation examples.展开更多
文摘选取IEEE-57节点测试系统进行振荡模式、阻尼特性和电力系统稳定器(power system stabilizer,PSS)投退分析,校核系统PSS配置的合理性及抑制低频振荡的效果。基于自适应加速粒子群算法分3步对测试系统进行PSS参数协同优化和配置,第一步对15号机PSS参数进行单机优化,对比系统阻尼;第二步对18号机进行PSS配置及其参数优化,提高测试系统阻尼;第三步对15、18号两机进行PSS参数协同优化,获得更高阻尼特性的参数。利用小干扰稳定时域仿真和普罗尼算法(Prony分析),验证得协同优化的PSS参数阻尼效果更好,系统动态安全稳定水平更高且PSS协同优化及配置方法有效可行。
文摘针对VPMCD中模型选择方法的不合理和小样本多分类时识别率降低的缺陷,结合动态加速常数协同惯性权重的粒子群(Particle swarm optimization with dynamic accelerating constant and coordinating with inertia weight,PSODACCIW)算法的全局优化能力和加权融合理论,提出基于PSODACCIW-VPMCD的滚动轴承智能检测方法。首先对样本提取特征变量,然后采用PSODACCIW算法优化诊断融合权值矩阵,最后对滚动轴承的故障类型和工作状态进行分类和识别。实验结果表明,该方法能够有效地应用于滚动轴承的智能检测中。
基金supported by the National Natural Science Foundation of China(71171015)the National High Technology Research and Development Program(863 Program)(2012AA112403)
文摘To deal with the demerits of constriction particle swarm optimization(CPSO), such as relapsing into local optima, slow convergence velocity, a modified CPSO algorithm is proposed by improving the velocity update formula of CPSO. The random velocity operator from local optima to global optima is added into the velocity update formula of CPSO to accelerate the convergence speed of the particles to the global optima and reduce the likelihood of being trapped into local optima. Finally the convergence of the algorithm is verified by calculation examples.