In this paper, a new method called dynamic finite layer--element method (DFLEM) is used to analyse the soil--structure interaction of new type offshore platforms. Some valuable results have been obtained. The results ...In this paper, a new method called dynamic finite layer--element method (DFLEM) is used to analyse the soil--structure interaction of new type offshore platforms. Some valuable results have been obtained. The results show that the DFLEM is a new effective method to analyse dynamic soil--structure interaction and can be applied widely in practice.展开更多
A strong Mw7.0 earthquake struck Pingtung offshore of Talwan on December 26, 2006. It consisted of two major events with an 8-minute interval. The first major shock occurred at 12:26 UTC. Focal mechanism results from...A strong Mw7.0 earthquake struck Pingtung offshore of Talwan on December 26, 2006. It consisted of two major events with an 8-minute interval. The first major shock occurred at 12:26 UTC. Focal mechanism results from Harvard, USGS, and BATS all indicated that the first major shock was a normal fault earthquake and the second one was dominated by strike-slip offsets. The location of the epicenter varied greatly in depth in different analyses. The latest results showed that the focal depth of the first shock was most probably around 40-44 km, placing the epicenter in the lithospheric mantle. However, this is not a location where earthquakes usually occur. To explore the geodynamical mechanism of this event, we carded out 2D finite element method (FEM) numerical experiments. Our primary results indicate that the geodynamical background, as well as the formation of Pingtung earthquake, is a consequence of the collision between Luzon arc and Chinese continental margin. Although Taiwan Island is in the shadow of NW-SE trending compressive collision zone, the existence of ductile lower crust leads to the decoupling between upper crust and lithospheric mantle. As lithospheric mantle subducts to the depth of around 250 km, the upper part of the bending subduction slab puts itself in an extensional state. The extensional stress from bending induced the occurrence of this normal fault earthquake at the critical point.展开更多
文摘In this paper, a new method called dynamic finite layer--element method (DFLEM) is used to analyse the soil--structure interaction of new type offshore platforms. Some valuable results have been obtained. The results show that the DFLEM is a new effective method to analyse dynamic soil--structure interaction and can be applied widely in practice.
基金supported by National Natural Science Foundation of China (Grant No. 40774048)Major Research of National Natural Science Foundation of China (Grant No. 90814014)Sino-Probe Project of China and Knowledge Innovation Program of Chinese Academy of Sciences (Grant No. KZCX2-YW-123)
文摘A strong Mw7.0 earthquake struck Pingtung offshore of Talwan on December 26, 2006. It consisted of two major events with an 8-minute interval. The first major shock occurred at 12:26 UTC. Focal mechanism results from Harvard, USGS, and BATS all indicated that the first major shock was a normal fault earthquake and the second one was dominated by strike-slip offsets. The location of the epicenter varied greatly in depth in different analyses. The latest results showed that the focal depth of the first shock was most probably around 40-44 km, placing the epicenter in the lithospheric mantle. However, this is not a location where earthquakes usually occur. To explore the geodynamical mechanism of this event, we carded out 2D finite element method (FEM) numerical experiments. Our primary results indicate that the geodynamical background, as well as the formation of Pingtung earthquake, is a consequence of the collision between Luzon arc and Chinese continental margin. Although Taiwan Island is in the shadow of NW-SE trending compressive collision zone, the existence of ductile lower crust leads to the decoupling between upper crust and lithospheric mantle. As lithospheric mantle subducts to the depth of around 250 km, the upper part of the bending subduction slab puts itself in an extensional state. The extensional stress from bending induced the occurrence of this normal fault earthquake at the critical point.