A catastrophic landslide occurred at Hongao dumpsite in Guangming New District of Shenzhen, South China, on December 20, 2015. An estimated total volume of 2.73×106 m3 of construction spoils was mobilized during ...A catastrophic landslide occurred at Hongao dumpsite in Guangming New District of Shenzhen, South China, on December 20, 2015. An estimated total volume of 2.73×106 m3 of construction spoils was mobilized during this event. The landslide traveled a long distance on a low-relief terrain. The affected area was approximately 1100 m in length and 630 m in width. This landslide made 33 buildings destroyed, 73 people died and 4 people lost. Due to the special dumping history and other factors, soil in this landfill is of high initial water content. To identify the major factors that attribute to the long runout character, a two-phase flow model of Iverson and George was used to simulate the dynamics of this landslide. The influence of initial hydraulic permeability, initial dilatancy, and earth pressure coefficient was examined through numerical simulations. We found that pore pressure has the most significant effect on the dynamic characteristics of Shenzhen landslides. Average pore pressure ratio ofthe whole basal surface was used to evaluate the degree of liquefaction for the sliding material. The evolution and influence factors of this ratio were analyzed based on the computational results. An exponential function was proposed to fit the evolution curve of the average pore pressure ratio, which can be used as a reasonable and simplified evaluation of the pore pressure. This fitting function can be utilized to improve the single-phase flow model.展开更多
Earthquake-triggered landslides usually cause great disasters,and yet their dynamic mechanisms remain poorly understood.This paper will derive a general conceptual landslide model from the geometric and kinematic feat...Earthquake-triggered landslides usually cause great disasters,and yet their dynamic mechanisms remain poorly understood.This paper will derive a general conceptual landslide model from the geometric and kinematic features of the most landslide masses triggered by the 2008 Wenchuan earthquake.Kinematic characteristics and dynamic processes are simulated here by means of finite element method(FEM)based on the dynamic process of the discontinuous deformable body.The calculated results presented the whole course of landslide motion,and displayed some typical kinematic characteristics such as initiation,sliding,ejection,collision,flying in the air,and climbing of landslides.The simulation result also shows that,under combined seismic inertial forces and gravity,landslides will start to slip once it overcomes the friction between the sliding mass and slip-bed,then it will move from slow to fast along the slippery bed until it ejects from the slip-bed.Moreover,the high frequencies and serious damages by landslides in the Wenchuan earthquake are caused by the strong ground motion on the mountain slopes in and around the epicenter that was dramatically amplified owing to both resonances produced by the seismic event and topographical amplification by seismic motion.In addition,the modeling results suggest that the direction,amplitude,frequency,and duration of strong ground motion have a great influence on the stability of landslide mass.Therefore,the study helps us better understand dynamic mechanism of landslides,seismic hazard assessment,and dynamic earthquake triggering.展开更多
基金supported by the National Key R&D Program of China(Grant Nos.2017YFC1502502,2017YFC1502506)National Nature Science Foundation of China(Grant Nos.41672318,51679229,41372331)+1 种基金135 Strategic Program of the Institute of Mountain Hazards and Environment,CAS(Grant No.SDS-135-1701)supported by Youth Innovation Promotion Association of the Chinese Academy of Sciences(2018405)
文摘A catastrophic landslide occurred at Hongao dumpsite in Guangming New District of Shenzhen, South China, on December 20, 2015. An estimated total volume of 2.73×106 m3 of construction spoils was mobilized during this event. The landslide traveled a long distance on a low-relief terrain. The affected area was approximately 1100 m in length and 630 m in width. This landslide made 33 buildings destroyed, 73 people died and 4 people lost. Due to the special dumping history and other factors, soil in this landfill is of high initial water content. To identify the major factors that attribute to the long runout character, a two-phase flow model of Iverson and George was used to simulate the dynamics of this landslide. The influence of initial hydraulic permeability, initial dilatancy, and earth pressure coefficient was examined through numerical simulations. We found that pore pressure has the most significant effect on the dynamic characteristics of Shenzhen landslides. Average pore pressure ratio ofthe whole basal surface was used to evaluate the degree of liquefaction for the sliding material. The evolution and influence factors of this ratio were analyzed based on the computational results. An exponential function was proposed to fit the evolution curve of the average pore pressure ratio, which can be used as a reasonable and simplified evaluation of the pore pressure. This fitting function can be utilized to improve the single-phase flow model.
基金supported by National Natural Science Foundation of China(Grant No.40974020)Special Project in Ministry of Land and Resources(Grant No.SinoProbe-07)Special Project for Basic Research on the State Level(Grant No.ZDJ2009-1)
文摘Earthquake-triggered landslides usually cause great disasters,and yet their dynamic mechanisms remain poorly understood.This paper will derive a general conceptual landslide model from the geometric and kinematic features of the most landslide masses triggered by the 2008 Wenchuan earthquake.Kinematic characteristics and dynamic processes are simulated here by means of finite element method(FEM)based on the dynamic process of the discontinuous deformable body.The calculated results presented the whole course of landslide motion,and displayed some typical kinematic characteristics such as initiation,sliding,ejection,collision,flying in the air,and climbing of landslides.The simulation result also shows that,under combined seismic inertial forces and gravity,landslides will start to slip once it overcomes the friction between the sliding mass and slip-bed,then it will move from slow to fast along the slippery bed until it ejects from the slip-bed.Moreover,the high frequencies and serious damages by landslides in the Wenchuan earthquake are caused by the strong ground motion on the mountain slopes in and around the epicenter that was dramatically amplified owing to both resonances produced by the seismic event and topographical amplification by seismic motion.In addition,the modeling results suggest that the direction,amplitude,frequency,and duration of strong ground motion have a great influence on the stability of landslide mass.Therefore,the study helps us better understand dynamic mechanism of landslides,seismic hazard assessment,and dynamic earthquake triggering.