Reaction runaway has longtime been an issue in chemical industry as it often leads to severe accidents if not controlled and inhibited properly.Herein we have reviewed several key considerations and procedures to prev...Reaction runaway has longtime been an issue in chemical industry as it often leads to severe accidents if not controlled and inhibited properly.Herein we have reviewed several key considerations and procedures to prevent such phenomena,including inherently safer reactor design,thermal risk assessment and early warning detection of runaway,and pointed out that the basic principle underlying is necessary heat management and construction of resilient processes.For inherently safer reactor design,important factors such as heat removal,heat capacitance,flow behaviors and explosive behaviors have been investigated.The survey shows that heat exchanger(HEX) reactor and microreactor outperform traditional reactors.Meanwhile,we have looked into the effect of thermal risk ranking and safety operation region determining for thermal risk assessment,and the influence of runaway criteria and construction methods for early detection of reaction runaway as well.It shows that thermal risk assessment plays a key role on process design,and early warning detection system(EWDS) is preferable on prevention of reaction runaway.In the end,perspectives regarding inherently safer designs with the measures discussed above have been provided.展开更多
The paper defines the Safety Capacity of Chemical Industrial Park(SCCIP) from the perspective of acceptable regional risk. For the purpose of exploring the evaluation model for the SCCIP, a method based on quantitativ...The paper defines the Safety Capacity of Chemical Industrial Park(SCCIP) from the perspective of acceptable regional risk. For the purpose of exploring the evaluation model for the SCCIP, a method based on quantitative risk assessment was adopted for evaluating transport risk and to confirm reasonable safety transport capacity of chemical industrial park, and then by combining with the safety storage capacity, a SCCIP evaluation model was put forward. The SCCIP was decided by the smaller one between the largest safety storage capacity and the maximum safety transport capacity, or else, the regional risk of the park will exceed the acceptable level.The developed method was applied to a chemical industrial park in Guangdong province to obtain the maximum safety transport capacity and the SCCIP. The results can be realized in the regional risk control of the park effectively.展开更多
基金Supported by the National Key Research and Development Program of China(2016YFB0301701)
文摘Reaction runaway has longtime been an issue in chemical industry as it often leads to severe accidents if not controlled and inhibited properly.Herein we have reviewed several key considerations and procedures to prevent such phenomena,including inherently safer reactor design,thermal risk assessment and early warning detection of runaway,and pointed out that the basic principle underlying is necessary heat management and construction of resilient processes.For inherently safer reactor design,important factors such as heat removal,heat capacitance,flow behaviors and explosive behaviors have been investigated.The survey shows that heat exchanger(HEX) reactor and microreactor outperform traditional reactors.Meanwhile,we have looked into the effect of thermal risk ranking and safety operation region determining for thermal risk assessment,and the influence of runaway criteria and construction methods for early detection of reaction runaway as well.It shows that thermal risk assessment plays a key role on process design,and early warning detection system(EWDS) is preferable on prevention of reaction runaway.In the end,perspectives regarding inherently safer designs with the measures discussed above have been provided.
基金Supported by the Science and Technology Department of Guangdong Province(2009A030302001)
文摘The paper defines the Safety Capacity of Chemical Industrial Park(SCCIP) from the perspective of acceptable regional risk. For the purpose of exploring the evaluation model for the SCCIP, a method based on quantitative risk assessment was adopted for evaluating transport risk and to confirm reasonable safety transport capacity of chemical industrial park, and then by combining with the safety storage capacity, a SCCIP evaluation model was put forward. The SCCIP was decided by the smaller one between the largest safety storage capacity and the maximum safety transport capacity, or else, the regional risk of the park will exceed the acceptable level.The developed method was applied to a chemical industrial park in Guangdong province to obtain the maximum safety transport capacity and the SCCIP. The results can be realized in the regional risk control of the park effectively.