This paper obtain that the radius of starlikeness for class S(α,n)in [1] is,tespectivety, where α_ is unique solution of equation (αα)^(1/2)=σwith a in (0.1),and α-[1+(1-2α)r^(2n)]/(1-r^(2n)),σ =[1-(1-2α)r~]...This paper obtain that the radius of starlikeness for class S(α,n)in [1] is,tespectivety, where α_ is unique solution of equation (αα)^(1/2)=σwith a in (0.1),and α-[1+(1-2α)r^(2n)]/(1-r^(2n)),σ =[1-(1-2α)r~]/(1+r~).Futhermore,we consider an extension of class S(α,n):Let S(α、β、n) denote the class of functions f(z)=z+α_z^(n+1)+…(n≥1)that are analytie in |z|<1 such that f(z)/g (z)∈p(α,n)[1],where g(z)∈S~*(β)[2].This paper prove that the radius of starlikeness of class S(α, β,n) is given by the smallest positive root(less than 1)of the following equations (1-2α)(1-2β)r^(2)-2[1-α-β-n(1-α)]r^+1=0.0≤α≤α_0, (1-α)[1-(1-2β)r~]-n[r^(1+r^)=0.,α_0≤α<1. where α=[1+(1-2α)r^(2)]/(1-r^(2)(0≤r<1),α_0(?(0,1) is some fixed number.This result is also the cxtension of well-known results[T.Th3] and [8,Th3]展开更多
This paper discusses some properties of two classes Vk[α,β] and Rk[α,β ]. Sharp distortion theorem and radius of convexity and starlikeness are obtained. Hadamard product of functions in the classes are also studied.
This work aims at potential fields generated by point sources in conductive perforated fragments of spherical shells. Such fields are interpreted as profiles of Green's functions of relevant boundary-value problems s...This work aims at potential fields generated by point sources in conductive perforated fragments of spherical shells. Such fields are interpreted as profiles of Green's functions of relevant boundary-value problems stated in multiply-connected regions for Laplace equation written in geographical coordinates. Those are efficiently computed by a modification of the method of functional equations, with closed analytical forms preliminary obtained for Green's functions for the corresponding simply-connected regions.展开更多
文摘This paper obtain that the radius of starlikeness for class S(α,n)in [1] is,tespectivety, where α_ is unique solution of equation (αα)^(1/2)=σwith a in (0.1),and α-[1+(1-2α)r^(2n)]/(1-r^(2n)),σ =[1-(1-2α)r~]/(1+r~).Futhermore,we consider an extension of class S(α,n):Let S(α、β、n) denote the class of functions f(z)=z+α_z^(n+1)+…(n≥1)that are analytie in |z|<1 such that f(z)/g (z)∈p(α,n)[1],where g(z)∈S~*(β)[2].This paper prove that the radius of starlikeness of class S(α, β,n) is given by the smallest positive root(less than 1)of the following equations (1-2α)(1-2β)r^(2)-2[1-α-β-n(1-α)]r^+1=0.0≤α≤α_0, (1-α)[1-(1-2β)r~]-n[r^(1+r^)=0.,α_0≤α<1. where α=[1+(1-2α)r^(2)]/(1-r^(2)(0≤r<1),α_0(?(0,1) is some fixed number.This result is also the cxtension of well-known results[T.Th3] and [8,Th3]
文摘This paper discusses some properties of two classes Vk[α,β] and Rk[α,β ]. Sharp distortion theorem and radius of convexity and starlikeness are obtained. Hadamard product of functions in the classes are also studied.
文摘This work aims at potential fields generated by point sources in conductive perforated fragments of spherical shells. Such fields are interpreted as profiles of Green's functions of relevant boundary-value problems stated in multiply-connected regions for Laplace equation written in geographical coordinates. Those are efficiently computed by a modification of the method of functional equations, with closed analytical forms preliminary obtained for Green's functions for the corresponding simply-connected regions.