为更好地解决传统模型特征捕捉能力不足,词向量语义表示不准确等问题,提出了结合MacBERT与多层次特征协同网络的音乐社交评论情感分析模型MacBERT-MFCN(MacBERT and Multi-level Feature Collaborative Network)。采用MacBERT模型提取...为更好地解决传统模型特征捕捉能力不足,词向量语义表示不准确等问题,提出了结合MacBERT与多层次特征协同网络的音乐社交评论情感分析模型MacBERT-MFCN(MacBERT and Multi-level Feature Collaborative Network)。采用MacBERT模型提取评论文本特征向量,解决静态词向量无法表示多义词的问题;多层次特征协同网络结合双向内置注意力简单循环单元(Bidirectional Built in Attention Simple Recurrent Unit,BiBASRU)和多层次卷积神经网络(Multilevel Convolutional Neural Network,MCNN)模块,全面捕捉局部和上下文语义特征;软注意力用来衡量分类特征贡献的大小,赋予关键特征更高权重。基于网易云评论文本数据集进行实验,结果表明,MacBERTMFCN模型F1值高达95.56%,能有效地提升文本情感分类准确率。展开更多
针对基础深度学习模型特征提取能力不足,循环网络训练效率低等问题,将高校社交网络平台评论文本数据作为研究对象,提出了基于多尺度语义协同网络的高校网络舆论情感分类模型。预训练模型ALBERT(A Lite BERT)通过结合当前词的具体上下文...针对基础深度学习模型特征提取能力不足,循环网络训练效率低等问题,将高校社交网络平台评论文本数据作为研究对象,提出了基于多尺度语义协同网络的高校网络舆论情感分类模型。预训练模型ALBERT(A Lite BERT)通过结合当前词的具体上下文动态调整向量表示,提升词向量语义表征质量。多尺度语义协同网络捕捉评论文本不同尺度下的多通道融合情感特征,软注意力机制计算每个特征对情感分类结果的影响权重大小,加权求和后得到情感分类特征表示,线性层输出分布概率并得到具体情感倾向。在真实高校图书馆社交网络平台用户评论数据集进行实验,结果表明该模型F1分数达到了97.46%,优于近期表现优秀的实验对比模型,且通过消融实验证明了各个功能模块的有效性。展开更多
针对智慧协同网络提出一种服务内容在传输路径上的缓存分配策略。该策略根据服务内容的流行度部署其在传输路径上的缓存位置,以求充分、高效地发挥网络缓存作用,进而提升网络的总体性能。所提分配策略分别在5层树型拓扑和由279个节点组...针对智慧协同网络提出一种服务内容在传输路径上的缓存分配策略。该策略根据服务内容的流行度部署其在传输路径上的缓存位置,以求充分、高效地发挥网络缓存作用,进而提升网络的总体性能。所提分配策略分别在5层树型拓扑和由279个节点组成的真实网络拓扑中进行了性能测试。结果显示,该策略在所测的性能参数中表现出色,就平均服务获取距离而言,较命名数据网络(NDN,named data nerworking)所使用的LCE(leave copy everywhere)策略,其性能提高20%以上。展开更多
文摘为更好地解决传统模型特征捕捉能力不足,词向量语义表示不准确等问题,提出了结合MacBERT与多层次特征协同网络的音乐社交评论情感分析模型MacBERT-MFCN(MacBERT and Multi-level Feature Collaborative Network)。采用MacBERT模型提取评论文本特征向量,解决静态词向量无法表示多义词的问题;多层次特征协同网络结合双向内置注意力简单循环单元(Bidirectional Built in Attention Simple Recurrent Unit,BiBASRU)和多层次卷积神经网络(Multilevel Convolutional Neural Network,MCNN)模块,全面捕捉局部和上下文语义特征;软注意力用来衡量分类特征贡献的大小,赋予关键特征更高权重。基于网易云评论文本数据集进行实验,结果表明,MacBERTMFCN模型F1值高达95.56%,能有效地提升文本情感分类准确率。
文摘针对基础深度学习模型特征提取能力不足,循环网络训练效率低等问题,将高校社交网络平台评论文本数据作为研究对象,提出了基于多尺度语义协同网络的高校网络舆论情感分类模型。预训练模型ALBERT(A Lite BERT)通过结合当前词的具体上下文动态调整向量表示,提升词向量语义表征质量。多尺度语义协同网络捕捉评论文本不同尺度下的多通道融合情感特征,软注意力机制计算每个特征对情感分类结果的影响权重大小,加权求和后得到情感分类特征表示,线性层输出分布概率并得到具体情感倾向。在真实高校图书馆社交网络平台用户评论数据集进行实验,结果表明该模型F1分数达到了97.46%,优于近期表现优秀的实验对比模型,且通过消融实验证明了各个功能模块的有效性。
文摘针对智慧协同网络提出一种服务内容在传输路径上的缓存分配策略。该策略根据服务内容的流行度部署其在传输路径上的缓存位置,以求充分、高效地发挥网络缓存作用,进而提升网络的总体性能。所提分配策略分别在5层树型拓扑和由279个节点组成的真实网络拓扑中进行了性能测试。结果显示,该策略在所测的性能参数中表现出色,就平均服务获取距离而言,较命名数据网络(NDN,named data nerworking)所使用的LCE(leave copy everywhere)策略,其性能提高20%以上。