在实际应用中由于恶劣环境或人为干扰等因素而导致多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达部分阵元失效,使得其接收数据缺失及其协方差矩阵秩亏,从而导致子空间类算法的波达方向(Direction of Arrival,DOA)估计性能恶...在实际应用中由于恶劣环境或人为干扰等因素而导致多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达部分阵元失效,使得其接收数据缺失及其协方差矩阵秩亏,从而导致子空间类算法的波达方向(Direction of Arrival,DOA)估计性能恶化甚至完全失效。针对上述问题,提出了一种接收阵元失效下基于协方差矩阵重构的MIMO雷达DOA估计方法。该方法根据MIMO雷达协方差矩阵中以接收阵元数划分的子方块矩阵具有Toeplitz特性,利用正常工作接收阵元的协方差矩阵元素来恢复相应的缺失元素,从而重构出完整的数据协方差矩阵,提高阵元失效MIMO雷达的DOA估计性能。仿真结果验证了所提方法的有效性。展开更多
为解决传统波束形成器在干扰位置发生扰动和导向矢量失配时,造成自适应权重的不匹配,从而导致算法性能急剧下降,甚至期望信号相消的问题,提出一种联合协方差矩阵重构和交替方向乘子法(Alternating direction method of multipliers,ADMM...为解决传统波束形成器在干扰位置发生扰动和导向矢量失配时,造成自适应权重的不匹配,从而导致算法性能急剧下降,甚至期望信号相消的问题,提出一种联合协方差矩阵重构和交替方向乘子法(Alternating direction method of multipliers,ADMM)的鲁棒波束形成方法。对此,首先基于波束形成器最大输出功率准则,设计了求解最优导向矢量的优化模型。接着,根据Capon算法空间功率谱函数,利用定义的干扰范围对协方差矩阵进行重构,以展宽零陷并增强系统抗运动干扰能力。最后,关于导向矢量的二次不等式约束问题,本质为估计导向矢量和期望导向矢量间的差异,该方法利用ADMM对该二次规划问题进行迭代求解,并在每次迭代中获得导向矢量的具体解。另外,也分析了算法的复杂度。实验结果表明:对比现有的波束形成算法,在干扰处加宽了零陷,提高了波束的抗干扰性;结合复杂度也证明了其计算速度优于现有的算法,并且能够很好地校正失配导向矢量。本方法也为求解二次不等式约束问题和提高波束形成算法性能提供了一种思路和途径。展开更多
文摘在实际应用中由于恶劣环境或人为干扰等因素而导致多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达部分阵元失效,使得其接收数据缺失及其协方差矩阵秩亏,从而导致子空间类算法的波达方向(Direction of Arrival,DOA)估计性能恶化甚至完全失效。针对上述问题,提出了一种接收阵元失效下基于协方差矩阵重构的MIMO雷达DOA估计方法。该方法根据MIMO雷达协方差矩阵中以接收阵元数划分的子方块矩阵具有Toeplitz特性,利用正常工作接收阵元的协方差矩阵元素来恢复相应的缺失元素,从而重构出完整的数据协方差矩阵,提高阵元失效MIMO雷达的DOA估计性能。仿真结果验证了所提方法的有效性。
文摘为解决传统波束形成器在干扰位置发生扰动和导向矢量失配时,造成自适应权重的不匹配,从而导致算法性能急剧下降,甚至期望信号相消的问题,提出一种联合协方差矩阵重构和交替方向乘子法(Alternating direction method of multipliers,ADMM)的鲁棒波束形成方法。对此,首先基于波束形成器最大输出功率准则,设计了求解最优导向矢量的优化模型。接着,根据Capon算法空间功率谱函数,利用定义的干扰范围对协方差矩阵进行重构,以展宽零陷并增强系统抗运动干扰能力。最后,关于导向矢量的二次不等式约束问题,本质为估计导向矢量和期望导向矢量间的差异,该方法利用ADMM对该二次规划问题进行迭代求解,并在每次迭代中获得导向矢量的具体解。另外,也分析了算法的复杂度。实验结果表明:对比现有的波束形成算法,在干扰处加宽了零陷,提高了波束的抗干扰性;结合复杂度也证明了其计算速度优于现有的算法,并且能够很好地校正失配导向矢量。本方法也为求解二次不等式约束问题和提高波束形成算法性能提供了一种思路和途径。