A novel single-phase Buck converter for power factor correction is proposed. It features simple control due to the constant duty ratio PWM used. It can obtain unity power factor by selecting a suitable LC filter at it...A novel single-phase Buck converter for power factor correction is proposed. It features simple control due to the constant duty ratio PWM used. It can obtain unity power factor by selecting a suitable LC filter at its input to force the voltage of capacitor to operate in discontinuous capacitor voltage mode. And by using another resonant LC filter at its output, it can not only eliminate the input current distortion at the vicinity of the zero crossing of the supply but also drastically reduce the 100 Hz output voltage ripple. The validity of analysis is confirmed by simulation results and experimental results.展开更多
This paper presents a new ZVT (zero-voltage transition) single-stage ac-to-dc converter using PWM (pulse width modulation) and HF (high frequency) transformer isolation with capacitive output filter. In this con...This paper presents a new ZVT (zero-voltage transition) single-stage ac-to-dc converter using PWM (pulse width modulation) and HF (high frequency) transformer isolation with capacitive output filter. In this converter a front-end power factor corrected boost stage integrates with a cascaded dc-to-dc bridge HF converter. The front-end boost converter operates in discontinuous current mode and ensures natural power factor correction with very simple control. The auxiliary circuit of this topology deals with very small power and is placed out of the main power path. As a result, the auxiliary circuit components have smaller power rating as opposed to main converter components. Also, output rectifier voltage is clamped to output voltage due to capacitive output filter. Identification and analyses of different operating modes of this converter are presented. Based on these analyses design example of a 50 kHz, 48 V, 1 kW ac-to-dc converter is presented. PSPICE simulation results of the designed converter are presented and explained to verify the performance of this converter.展开更多
文摘A novel single-phase Buck converter for power factor correction is proposed. It features simple control due to the constant duty ratio PWM used. It can obtain unity power factor by selecting a suitable LC filter at its input to force the voltage of capacitor to operate in discontinuous capacitor voltage mode. And by using another resonant LC filter at its output, it can not only eliminate the input current distortion at the vicinity of the zero crossing of the supply but also drastically reduce the 100 Hz output voltage ripple. The validity of analysis is confirmed by simulation results and experimental results.
文摘This paper presents a new ZVT (zero-voltage transition) single-stage ac-to-dc converter using PWM (pulse width modulation) and HF (high frequency) transformer isolation with capacitive output filter. In this converter a front-end power factor corrected boost stage integrates with a cascaded dc-to-dc bridge HF converter. The front-end boost converter operates in discontinuous current mode and ensures natural power factor correction with very simple control. The auxiliary circuit of this topology deals with very small power and is placed out of the main power path. As a result, the auxiliary circuit components have smaller power rating as opposed to main converter components. Also, output rectifier voltage is clamped to output voltage due to capacitive output filter. Identification and analyses of different operating modes of this converter are presented. Based on these analyses design example of a 50 kHz, 48 V, 1 kW ac-to-dc converter is presented. PSPICE simulation results of the designed converter are presented and explained to verify the performance of this converter.