过度捕捞和环境恶化导致渔业资源和海洋生态系统逆向发展。采用EwE5.1(Ecopath with Ecosim)软件,对南海北部大陆架分别建立20世纪80年代末期(1989~1992年)、20世纪90年代末期(1997~2000年)和21世纪初期三个代表时间段的Ecop...过度捕捞和环境恶化导致渔业资源和海洋生态系统逆向发展。采用EwE5.1(Ecopath with Ecosim)软件,对南海北部大陆架分别建立20世纪80年代末期(1989~1992年)、20世纪90年代末期(1997~2000年)和21世纪初期三个代表时间段的Ecopath(生态通道模型)模型。通过三阶段的流量、生物量、生产量、捕捞量、系统总流量、总循环流量以及Finn’s循环指数和Finn’s平均路径长度等方面的比较分析,得出近20a的过度捕捞导致系统与渔业资源逐渐“退化”。20世纪90年代末期休渔政策对此有一些缓和作用,但总趋势不变。展开更多
We compared nonlinear principal component analysis(NLPCA) with linear principal component analysis(LPCA) with the data of sea surface wind anomalies(SWA),surface height anomalies(SSHA),and sea surface temperature anom...We compared nonlinear principal component analysis(NLPCA) with linear principal component analysis(LPCA) with the data of sea surface wind anomalies(SWA),surface height anomalies(SSHA),and sea surface temperature anomalies(SSTA),taken in the South China Sea(SCS) between 1993 and 2003.The SCS monthly data for SWA,SSHA and SSTA(i.e.,the anomalies with climatological seasonal cycle removed) were pre-filtered by LPCA,with only three leading modes retained.The first three modes of SWA,SSHA,and SSTA of LPCA explained 86%,71%,and 94% of the total variance in the original data,respectively.Thus,the three associated time coefficient functions(TCFs) were used as the input data for NLPCA network.The NLPCA was made based on feed-forward neural network models.Compared with classical linear PCA,the first NLPCA mode could explain more variance than linear PCA for the above data.The nonlinearity of SWA and SSHA were stronger in most areas of the SCS.The first mode of the NLPCA on the SWA and SSHA accounted for 67.26% of the variance versus 54.7%,and 60.24% versus 50.43%,respectively for the first LPCA mode.Conversely,the nonlinear SSTA,localized in the northern SCS and southern continental shelf region,resulted in little improvement in the explanation of the variance for the first NLPCA.展开更多
Recent progress of physical oceanography in the South China Sea (SCS) associated with the western boundary current (WBC) and eddies is reviewed in this paper. It includes Argo observations of the WBC, eddy detection i...Recent progress of physical oceanography in the South China Sea (SCS) associated with the western boundary current (WBC) and eddies is reviewed in this paper. It includes Argo observations of the WBC, eddy detection in the WBC based on satellite images, cross-continental shelf exchange in the WBC, eddy-current interaction, interannual variability of the WBC, air-sea interaction, the SCS throughflow (SCSTF), among others. The WBC in the SCS is strong, and its structure, variability and dynamic processes on seasonal and interannual time scales are yet to be fully understood. In this paper, we summarize progresses on the variability of the WBC, eddy-current interaction, air-sea interaction, and the SCSTF achieved in the past few years. Firstly, using the drifting buoy observations, we point out that the WBC becomes stronger and narrower after it reaches the central Vietnam coast. The possible mechanisms influencing the ocean circulation in the northern SCS are discussed, and the dynamic mechanisms that induce the countercurrent in the region of northern branch of WBC in winter are also studied quantitatively using momentum balance. The geostropic component of the WBC was diagnosed using the ship observation along 18°N, and we found that the WBC changed significantly on interannual time scale. Secondly, using the ship observations, two anti-cyclonic eddies in the winter of 2003/2004 in the northern SCS, and three anti-cyclonic eddies in the summer of 2007 along 18°N were studied. The results show that the two anti-cyclonic eddies can propagate southwestward along the continental shelf at the speed of first Rossby wave (~0.1 ms-1 ) in winter, and the interaction between the three anti-cyclonic eddies in summer and the WBC in the SCS is preliminarily revealed. Eddies on the continental shelf of northern SCS propagated southeastward with a maximum speed of 0.09 ms-1 , and those to the east of Vietnam coast had the largest kinetic energy, both of which imply strong interaction between eddy activity and WBC in the SCS. Thirdly, strong intraseasonal variability (ISV) of sea surface temperature (SST) near the WBC regions was found, and the ISV signal of SST in winter weakens the ISV signal of latent heat flux by 20%. Fourthly, the long-term change of SCSTF volume transport and its connection with the ocean circulation in the Pacific were discussed.展开更多
Based on a data base of multi-channel seismic profiles covered over Dongsha plateau of the northern South China Sea margin, we found that the sea bed morphology of northern South China Sea margin had been changed dram...Based on a data base of multi-channel seismic profiles covered over Dongsha plateau of the northern South China Sea margin, we found that the sea bed morphology of northern South China Sea margin had been changed dramatically after Dongsha uplifting, that sedimentary layer since Miocene age had been eroded with maximum eroded thickness more than 1000 m, and that an erosive channel had been formed of 20 km in width and 200 km in length and several hundreds meters in depth on the outer shelf of northern South China Sea. The erosive channel is parallel to the 600 m isobath line, stretching from northeast to the southwest north of Dongsha uplift. The Kuroshio intrudes the South China Sea through Luzon Strait both in winter time and summer time, and in the northern South China Sea margin area, the intruded Kuroshio Branch takes the form of Pacific-Indian Ocean Through Flow (PITH) in winter time, while the Luzon Strait Subsurface Inflow (LSSIF) in summer time, the routes of both PITH and LSSIF coincide well with the distribution of the erosive channel. After climbing from the northern slope up to the northern shelf, and after joined by the southward flow from the middle northern shelf of South China Sea, the Kuroshio Branch is strengthened and thus is able to erode the sea floor, and the shape of the erosive channel is a result of the long-term interaction between the Kuroshio South China Sea Branch and the Dongsha outer shelf sea floor.展开更多
文摘过度捕捞和环境恶化导致渔业资源和海洋生态系统逆向发展。采用EwE5.1(Ecopath with Ecosim)软件,对南海北部大陆架分别建立20世纪80年代末期(1989~1992年)、20世纪90年代末期(1997~2000年)和21世纪初期三个代表时间段的Ecopath(生态通道模型)模型。通过三阶段的流量、生物量、生产量、捕捞量、系统总流量、总循环流量以及Finn’s循环指数和Finn’s平均路径长度等方面的比较分析,得出近20a的过度捕捞导致系统与渔业资源逐渐“退化”。20世纪90年代末期休渔政策对此有一些缓和作用,但总趋势不变。
基金Supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (No.KZCX1-YW-12)the National Natural Science Foundation of China (No.40706011)the Open Foundation of Key Laboratory of Marine Science and Numerical Modeling (MASNUM)
文摘We compared nonlinear principal component analysis(NLPCA) with linear principal component analysis(LPCA) with the data of sea surface wind anomalies(SWA),surface height anomalies(SSHA),and sea surface temperature anomalies(SSTA),taken in the South China Sea(SCS) between 1993 and 2003.The SCS monthly data for SWA,SSHA and SSTA(i.e.,the anomalies with climatological seasonal cycle removed) were pre-filtered by LPCA,with only three leading modes retained.The first three modes of SWA,SSHA,and SSTA of LPCA explained 86%,71%,and 94% of the total variance in the original data,respectively.Thus,the three associated time coefficient functions(TCFs) were used as the input data for NLPCA network.The NLPCA was made based on feed-forward neural network models.Compared with classical linear PCA,the first NLPCA mode could explain more variance than linear PCA for the above data.The nonlinearity of SWA and SSHA were stronger in most areas of the SCS.The first mode of the NLPCA on the SWA and SSHA accounted for 67.26% of the variance versus 54.7%,and 60.24% versus 50.43%,respectively for the first LPCA mode.Conversely,the nonlinear SSTA,localized in the northern SCS and southern continental shelf region,resulted in little improvement in the explanation of the variance for the first NLPCA.
基金supported by the National Basic Research Program of China(2011CB403504)the Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-EW-Y040)the National Natural Science Foundation of China (40830851)
文摘Recent progress of physical oceanography in the South China Sea (SCS) associated with the western boundary current (WBC) and eddies is reviewed in this paper. It includes Argo observations of the WBC, eddy detection in the WBC based on satellite images, cross-continental shelf exchange in the WBC, eddy-current interaction, interannual variability of the WBC, air-sea interaction, the SCS throughflow (SCSTF), among others. The WBC in the SCS is strong, and its structure, variability and dynamic processes on seasonal and interannual time scales are yet to be fully understood. In this paper, we summarize progresses on the variability of the WBC, eddy-current interaction, air-sea interaction, and the SCSTF achieved in the past few years. Firstly, using the drifting buoy observations, we point out that the WBC becomes stronger and narrower after it reaches the central Vietnam coast. The possible mechanisms influencing the ocean circulation in the northern SCS are discussed, and the dynamic mechanisms that induce the countercurrent in the region of northern branch of WBC in winter are also studied quantitatively using momentum balance. The geostropic component of the WBC was diagnosed using the ship observation along 18°N, and we found that the WBC changed significantly on interannual time scale. Secondly, using the ship observations, two anti-cyclonic eddies in the winter of 2003/2004 in the northern SCS, and three anti-cyclonic eddies in the summer of 2007 along 18°N were studied. The results show that the two anti-cyclonic eddies can propagate southwestward along the continental shelf at the speed of first Rossby wave (~0.1 ms-1 ) in winter, and the interaction between the three anti-cyclonic eddies in summer and the WBC in the SCS is preliminarily revealed. Eddies on the continental shelf of northern SCS propagated southeastward with a maximum speed of 0.09 ms-1 , and those to the east of Vietnam coast had the largest kinetic energy, both of which imply strong interaction between eddy activity and WBC in the SCS. Thirdly, strong intraseasonal variability (ISV) of sea surface temperature (SST) near the WBC regions was found, and the ISV signal of SST in winter weakens the ISV signal of latent heat flux by 20%. Fourthly, the long-term change of SCSTF volume transport and its connection with the ocean circulation in the Pacific were discussed.
基金supported by National Basic Research Program of China (Grant No. 2007CB411702)
文摘Based on a data base of multi-channel seismic profiles covered over Dongsha plateau of the northern South China Sea margin, we found that the sea bed morphology of northern South China Sea margin had been changed dramatically after Dongsha uplifting, that sedimentary layer since Miocene age had been eroded with maximum eroded thickness more than 1000 m, and that an erosive channel had been formed of 20 km in width and 200 km in length and several hundreds meters in depth on the outer shelf of northern South China Sea. The erosive channel is parallel to the 600 m isobath line, stretching from northeast to the southwest north of Dongsha uplift. The Kuroshio intrudes the South China Sea through Luzon Strait both in winter time and summer time, and in the northern South China Sea margin area, the intruded Kuroshio Branch takes the form of Pacific-Indian Ocean Through Flow (PITH) in winter time, while the Luzon Strait Subsurface Inflow (LSSIF) in summer time, the routes of both PITH and LSSIF coincide well with the distribution of the erosive channel. After climbing from the northern slope up to the northern shelf, and after joined by the southward flow from the middle northern shelf of South China Sea, the Kuroshio Branch is strengthened and thus is able to erode the sea floor, and the shape of the erosive channel is a result of the long-term interaction between the Kuroshio South China Sea Branch and the Dongsha outer shelf sea floor.