准确估计蓄电池荷电状态(state of charge,SOC)对于蓄电池的健康管理具有重要意义。现有SOC估算方法普遍存在复杂性高、自适应较弱的问题,更偏重于理论分析,难以满足实际在线监测的应用场景。为提高SOC估算过程的自适应性以及降低算法...准确估计蓄电池荷电状态(state of charge,SOC)对于蓄电池的健康管理具有重要意义。现有SOC估算方法普遍存在复杂性高、自适应较弱的问题,更偏重于理论分析,难以满足实际在线监测的应用场景。为提高SOC估算过程的自适应性以及降低算法应用的复杂性,提出了一种适用于在线监测应用场景的基于蜣螂优化算法和自适应无迹卡尔曼滤波的SOC估计算法。将二阶Thevenin等效电路作为蓄电池的模型,利用蜣螂优化算法对该模型的关键参数进行自适应辨识,根据所辨识的参数,利用自适应无迹卡尔曼滤波算法对SOC进行估算。为了验证该算法的有效性,利用锂离子电池不同动态工况的实验数据进行了测试。实验结果表明,在初始参数设置模糊或不准确的情况下,该算法依然能够自适应地获取精度更高的SOC估计结果,具有更好的鲁棒性。展开更多
锂离子电池具有无记忆效应、轻量化、环保等特点,因此常作为电动交通工具、电子设备的能源来源,并适用于各种规模的能源存储。在锂离子电池管理系统中,电池的荷电状态(state of charge,SOC)是最关键的指标之一,其准确估计对于实现电池...锂离子电池具有无记忆效应、轻量化、环保等特点,因此常作为电动交通工具、电子设备的能源来源,并适用于各种规模的能源存储。在锂离子电池管理系统中,电池的荷电状态(state of charge,SOC)是最关键的指标之一,其准确估计对于实现电池系统的高效能量管理和优化控制至关重要。因此本文提出了一种基于动态噪声自适应无迹卡尔曼滤波的SOC估计方法。首先,通过间歇放电实验获取电池不同SOC下的开路电压,并进一步拟合得到电池的OCV-SOC曲线,接着采用二阶RC等效电路模型对锂离子电池建模,然后通过混合功率脉冲特性工况测试对电池模型参数进行辨识。由于实际应用中锂离子电池为非线性系统且SOC估计精度容易受到噪声的影响,本文在卡尔曼滤波算法的基础上采用无迹变换处理,加入噪声自适应过程,以实现噪声特性自适应估计,动态调整测量噪声与过程噪声,提高算法鲁棒性以及估计精度。最后选取DST与FUDS工况进行验证,结果表明在不同工况下动态噪声自适应无迹卡尔曼滤波算法的估计平均绝对误差、最大绝对误差以及均方根误差相较于自适应无迹卡尔曼滤波、无迹卡尔曼滤波算法均有降低,其平均绝对误差小于0.59%。本文提出的动态噪声自适应无迹卡尔曼滤波算法能够更准确地估计锂离子电池SOC。展开更多
文摘准确估计蓄电池荷电状态(state of charge,SOC)对于蓄电池的健康管理具有重要意义。现有SOC估算方法普遍存在复杂性高、自适应较弱的问题,更偏重于理论分析,难以满足实际在线监测的应用场景。为提高SOC估算过程的自适应性以及降低算法应用的复杂性,提出了一种适用于在线监测应用场景的基于蜣螂优化算法和自适应无迹卡尔曼滤波的SOC估计算法。将二阶Thevenin等效电路作为蓄电池的模型,利用蜣螂优化算法对该模型的关键参数进行自适应辨识,根据所辨识的参数,利用自适应无迹卡尔曼滤波算法对SOC进行估算。为了验证该算法的有效性,利用锂离子电池不同动态工况的实验数据进行了测试。实验结果表明,在初始参数设置模糊或不准确的情况下,该算法依然能够自适应地获取精度更高的SOC估计结果,具有更好的鲁棒性。
文摘锂离子电池具有无记忆效应、轻量化、环保等特点,因此常作为电动交通工具、电子设备的能源来源,并适用于各种规模的能源存储。在锂离子电池管理系统中,电池的荷电状态(state of charge,SOC)是最关键的指标之一,其准确估计对于实现电池系统的高效能量管理和优化控制至关重要。因此本文提出了一种基于动态噪声自适应无迹卡尔曼滤波的SOC估计方法。首先,通过间歇放电实验获取电池不同SOC下的开路电压,并进一步拟合得到电池的OCV-SOC曲线,接着采用二阶RC等效电路模型对锂离子电池建模,然后通过混合功率脉冲特性工况测试对电池模型参数进行辨识。由于实际应用中锂离子电池为非线性系统且SOC估计精度容易受到噪声的影响,本文在卡尔曼滤波算法的基础上采用无迹变换处理,加入噪声自适应过程,以实现噪声特性自适应估计,动态调整测量噪声与过程噪声,提高算法鲁棒性以及估计精度。最后选取DST与FUDS工况进行验证,结果表明在不同工况下动态噪声自适应无迹卡尔曼滤波算法的估计平均绝对误差、最大绝对误差以及均方根误差相较于自适应无迹卡尔曼滤波、无迹卡尔曼滤波算法均有降低,其平均绝对误差小于0.59%。本文提出的动态噪声自适应无迹卡尔曼滤波算法能够更准确地估计锂离子电池SOC。