期刊文献+
共找到23,395篇文章
< 1 2 250 >
每页显示 20 50 100
注意力可变形卷积网络的木质板材瑕疵识别 被引量:3
1
作者 朱咏梅 李玉玲 +1 位作者 奚峥皓 盛鸿宇 《西南大学学报(自然科学版)》 CSCD 北大核心 2024年第2期159-169,共11页
为了解决木材缺陷检测中人工成本高、效率低的问题,该文基于可变性卷积网络和注意力机制,提出一种端到端的神经架构模型.首先,可变形卷积网络(Deformable Convolutional Network, DCN)通过将矩形网格转换为变形网格,使模型专注于具有更... 为了解决木材缺陷检测中人工成本高、效率低的问题,该文基于可变性卷积网络和注意力机制,提出一种端到端的神经架构模型.首先,可变形卷积网络(Deformable Convolutional Network, DCN)通过将矩形网格转换为变形网格,使模型专注于具有更多有用图像信息的区域.使用可变形卷积网络可以忽略图像特征中不相关的系数,解决了传统卷积在特征中学习更多信息能力有限的问题.然后,将DCN输出馈送到门控循环单元(Gated Recurrent Unit, GRU)层以学习缺陷图像的高级特征.最后,通过关注输入图像的最重要特征,应用注意力机制加强瑕疵区域的高亮度,从而提高模型识别的准确性.使用Matlab平台在4个木质板材缺陷数据集上将该文方法与现有其他方法进行比较分析,该文方法的准确率比其他3种对比方法提高了2.4%~13.2%的维度,灵敏度提高了3.3%~16.6%的维度,特异性提高了4%~21%的维度.实验结果表明,该文方法在检测精度和其他各个性能方面均优于现有方法,最佳准确率为99.2%,证明了该文方法的有效性. 展开更多
关键词 可变形卷积网络 注意力机制 瑕疵识别 缺陷 深度学习 木质板材
下载PDF
基于注意力时间卷积网络的农产品期货分解集成预测 被引量:1
2
作者 张大斌 黄均杰 +1 位作者 凌立文 林锐斌 《南京信息工程大学学报》 CAS 北大核心 2024年第3期311-320,共10页
针对农产品期货时间序列数据受多方面因素影响,非线性、非平稳数据特征难以提取而导致预测准确性不高的问题,基于“分解-集成”的预测思想,本文提出一种基于自适应噪声完备经验模态分解(CEEMDAN)与Transformer-Encoder-TCN的农产品期货... 针对农产品期货时间序列数据受多方面因素影响,非线性、非平稳数据特征难以提取而导致预测准确性不高的问题,基于“分解-集成”的预测思想,本文提出一种基于自适应噪声完备经验模态分解(CEEMDAN)与Transformer-Encoder-TCN的农产品期货预测方法.首先,使用CEEMDAN将时间序列分解为多尺度多频率的本征模态分量(IMF)与残差,降低了序列建模复杂度;其次,使用融合多阶段自注意力单元Transformer-Encoder的时间卷积网络(TCN)对各个分量子序列进行特征提取与预测,优化了序列显著特征建模权重;最后,将各个子序列预测值线性相加集成得到最终预测结果.以南华期货公司农产品指数中的大豆期货指数为研究对象,采用时序交叉验证与参数迁移的方式进行模型重训练,消融和对比实验结果表明,提出的新模型在RMSE、MAE和DS三个评价指标上具有良好的效果,验证了该模型对农产品期货预测的有效性. 展开更多
关键词 农产品期货 自适应噪声完备经验模态分解 自注意力机制 Transformer-Encoder 时间卷积网络
下载PDF
U型卷积网络在乳腺医学图像分割中的研究综述 被引量:1
3
作者 蒲秋梅 殷帅 +1 位作者 李正茂 赵丽娜 《计算机科学与探索》 CSCD 北大核心 2024年第6期1383-1403,共21页
U-Net及其变体模型在乳腺医学图像分割领域展现了卓越的性能,U-Net采用全卷积网络(FCN)结构进行语义分割,U-Net对称结构的高度灵活性和适应性可以通过调整网络深度、引入新的模块来适应不同的图像分割任务和挑战,这种创新结构对后续网... U-Net及其变体模型在乳腺医学图像分割领域展现了卓越的性能,U-Net采用全卷积网络(FCN)结构进行语义分割,U-Net对称结构的高度灵活性和适应性可以通过调整网络深度、引入新的模块来适应不同的图像分割任务和挑战,这种创新结构对后续网络设计产生了深远影响。深入探讨了基于U型卷积网络在乳腺医学图像分割中的应用,并对近年来用于乳腺医学图像分割的U型卷积网络进行了分类与归纳。针对U-Net网络结构改进的乳腺医学图像分割技术进行了如下总结。阐述了目前广泛使用的乳腺医学图像数据集及评价指标,陈述了常用的数据增强方法;详细介绍了U-Net模型的网络结构以及用于乳腺医学图像的传统分割方法;对用于乳腺医学图像分割方法的U型网络结构按照残差结构、多尺度特征、膨胀机制、注意力机制、跳跃连接机制、结合Transformer等方面改进进行归纳总结。讨论了当下乳腺医学图像分割所遇到的问题与挑战,对未来的研究走向做出了展望。 展开更多
关键词 医学图像分割 U型卷积网络 深度学习 乳腺疾病 图像处理
下载PDF
基于深度卷积网络的二维波达方向估计方法 被引量:1
4
作者 袁野 张伟科 许左宏 《电讯技术》 北大核心 2024年第4期497-503,共7页
为了提高信号波达方向估计技术的实时性和简便性,设计了一种适用于估计均匀圆阵多信号波达方向的深度卷积网络。由阵列观测数据得到的协方差矩阵被当作是包含实部和虚部两个通道的图像,将其当作是卷积神经网络的输入张量,便可以通过训... 为了提高信号波达方向估计技术的实时性和简便性,设计了一种适用于估计均匀圆阵多信号波达方向的深度卷积网络。由阵列观测数据得到的协方差矩阵被当作是包含实部和虚部两个通道的图像,将其当作是卷积神经网络的输入张量,便可以通过训练网络来提取包含在信号协方差矩阵中的波达方向细微特征,从而实现准确快速地同时对多个入射信号的方向进行估计的目的。仿真结果表明,设计的深度卷积网络能够很好地完成二维信号波达方向估计。相比于现有估计方法,卷积网络给出的结果更加精确,且算法相对稳定。因此,提出的深度卷积网络在多目标方位识别与跟踪领域具有潜在的工程应用价值。 展开更多
关键词 均匀圆阵(UCA) 波达方向(DOA)估计 深度卷积网络(DCN) 人工智能 图像分类
下载PDF
基于多粒度时间卷积网络的超短期风功率预测
5
作者 江国乾 徐向东 +3 位作者 白佳荣 何群 谢平 单伟 《太阳能学报》 EI CAS CSCD 北大核心 2024年第5期104-111,共8页
针对传统风功率预测方法通常基于固定时间粒进行研究,但该类方法往往忽略了其他时间粒度对风功率的影响的问题,提出一种基于多粒度时间卷积网络(MGTCN)的超短期风功率预测方法,使用时间卷积网络来挖掘多粒度视角下的风力机数据特征,并... 针对传统风功率预测方法通常基于固定时间粒进行研究,但该类方法往往忽略了其他时间粒度对风功率的影响的问题,提出一种基于多粒度时间卷积网络(MGTCN)的超短期风功率预测方法,使用时间卷积网络来挖掘多粒度视角下的风力机数据特征,并设计多粒度特征融合模块来增强模型的鲁棒性,提高风功率预测精度。首先,利用随机森林算法(RF)得到与输出功率相关性较强的部分特征数据;然后,对筛选后的特征数据进行多粒度划分,通过时间卷积网络(TCN)提取各个粒度的独立特征。最后,使用挤压激励网络(SENet)对不同粒度特征进行自适应加权融合,得到最终预测值。采用中国某风场数据进行算例分析,结果表明相较于其他方法,所提方法在24步预测任务和6步预测任务上取得了最佳的预测性能,具有较高的准确性和稳定性。在24步预测任务上归一化均方根误差、归一化平均绝对值误差和决定系数指标分别为0.152、0.108和0.7214,在6步预测任务上各指标分别为0.1027,0.0683和0.8717。 展开更多
关键词 风功率 预测 随机森林 多粒度计算 时间卷积网络 挤压激励网络
下载PDF
线卷积网络在二维线检测和三维线框重建中的应用
6
作者 戴锡笠 龚海刚 刘明 《小型微型计算机系统》 CSCD 北大核心 2024年第1期192-198,共7页
本文提出了一个线卷积网络,可以从图像中检测线段.通过预测每条线段的中心位置、长度和角度,该网络能够以端到端的方式检测线段.此外,根据线中心检测的特点,本文设计了一维旋转卷积模块,并通过分析,证明其满足等变性质.在实现上,本文采... 本文提出了一个线卷积网络,可以从图像中检测线段.通过预测每条线段的中心位置、长度和角度,该网络能够以端到端的方式检测线段.此外,根据线中心检测的特点,本文设计了一维旋转卷积模块,并通过分析,证明其满足等变性质.在实现上,本文采用改进的数据增强和非极大值抑制方法,有效的提高了线检测的性能.通过大量消融实验以及对比实验,本文提出的线卷积网络相比于当前最优算法HAWP,在精度上高出3个百分点,达到了当前最优.最后,将该方法应用于单张图三维线框重建任务,从可视化结果上看,明显优于之前的方法. 展开更多
关键词 线检测 线卷积网络 等变性 三维线框重建
下载PDF
基于时域卷积网络与Transformer的茶园蒸散量预测模型
7
作者 赵秀艳 王彬 +4 位作者 都晓娜 王武闯 丁兆堂 周长安 张开兴 《农业机械学报》 EI CAS CSCD 北大核心 2024年第9期337-346,共10页
在茶园水资源管理中,蒸散量(Evapotranspiration,ET)是评估作物水分需求的关键指标,由于茶园蒸散量预测具有时序性、不稳定性以及非线性耦合等特点,目前的茶园蒸散量预测模型存在预测精度较低的问题,针对此问题本文提出了一种新型的茶... 在茶园水资源管理中,蒸散量(Evapotranspiration,ET)是评估作物水分需求的关键指标,由于茶园蒸散量预测具有时序性、不稳定性以及非线性耦合等特点,目前的茶园蒸散量预测模型存在预测精度较低的问题,针对此问题本文提出了一种新型的茶园蒸散量预测模型。首先使用互信息算法(Mutual information,MI)与主成分分析算法(Principal component analysis,PCA)相融合的数据处理算法(MIPCA),筛选强相关的特征并提取主成分;其次将时域卷积网络(Temporal convolutional network,TCN)与Transformer融合,利用灰狼算法(Grey wolf optimization,GWO)优化超参数,捕捉茶园数据的全局依赖关系;最后整合2个网络构建了MIPCA-TCN-GWO-Transformer模型,通过消融试验和对比试验验证了模型性能,并对模型在不同时间步长下的性能进行测试。结果表明,该模型平均绝对百分比误差(Mean absolute percentage error,MAPE)、均方根误差(Root mean square error,RMSE)和决定系数(Coefficient of determination,R^(2))3个评价指标分别为0.015 mm/d、0.312 mm/d和0.962,优于长短期记忆模型(Long short term memory,LSTM)等传统预测模型。在小时尺度、日尺度和月尺度下的R^(2)分别为0.986、0.978和0.946,在不同时间步长下展现了良好的适应性和准确性。本文构建的MIPCA-TCN-GWO-Transformer模型具有较高的预测精度和稳定性,可为茶园水资源优化管理和灌溉制度制定提供科学参考。 展开更多
关键词 茶园 蒸散量 预测模型 主成分分析 互信息 时域卷积网络
下载PDF
基于全卷积网络的复杂背景红外弱小目标检测研究
8
作者 关晓丹 郑东平 肖成 《激光杂志》 CAS 北大核心 2024年第4期254-258,共5页
针对复杂背景红外弱小目标检测过程中存在的检测误差率高,检测时间过长等问题,提出基于全卷积网络的复杂背景红外弱小目标检测方法。分析复杂背景红外弱小目标检测的研究进展,找出不同方法的缺陷,采集红外图像,提取目标检测特征,并采用... 针对复杂背景红外弱小目标检测过程中存在的检测误差率高,检测时间过长等问题,提出基于全卷积网络的复杂背景红外弱小目标检测方法。分析复杂背景红外弱小目标检测的研究进展,找出不同方法的缺陷,采集红外图像,提取目标检测特征,并采用全卷积网络设计弱小目标检测的分类器,实现复杂背景红外弱小目标检测。实验结果表明,该方法的复杂背景红外弱小目标检测精度超过97%,具有较高的实际应用价值。 展开更多
关键词 卷积网络 红外弱小目标 检测精度 提取特征
下载PDF
基于改进时间卷积网络与藤Copula的短期风速预测
9
作者 黄宇 张宗拾 +2 位作者 刘家兴 李旭昕 张鹏 《电力科学与工程》 2024年第7期60-69,共10页
考虑风电场相邻风机风速间以及风速与气象因素间复杂的非线性关系,提出了一种基于改进时间卷积网络与藤Copula相结合的风速预测方法。首先,利用深度残差收缩网络中存在的注意力机制及软阈值化的思想改进时间卷积网络中的残差模块,并进... 考虑风电场相邻风机风速间以及风速与气象因素间复杂的非线性关系,提出了一种基于改进时间卷积网络与藤Copula相结合的风速预测方法。首先,利用深度残差收缩网络中存在的注意力机制及软阈值化的思想改进时间卷积网络中的残差模块,并进行初步风速预测;然后,考虑到众多气象因素对风速的影响,使用核主成分分析对气象数据进行降维,在保证数据特征的同时,降低数据的复杂度;最后,利用藤Copula在描述非线性相关结构方面的优势构建修正模型,使用降维的气象数据修正初步风速预测值,得到最终的风速预测结果。实验证明,所提方法提高了短期风速预测的精度。 展开更多
关键词 风速预测 改进时间卷积网络 气象因素 核主成分分析 藤Copula
下载PDF
基于时空图卷积网络的高速路交通流多步预测
10
作者 高铭 梅朵 《信息技术》 2024年第10期30-36,共7页
针对图卷积网络容易限制模型在交通流预测上有效的学习时空依赖问题,文中提出了一种时空图卷积循环网络(ST-GCRN)模型,首先通过时间卷积层以消除冗余的时间信息,其次,将图卷积网络与改进的门控循环网络相结合以获取时空依赖,最后通过加... 针对图卷积网络容易限制模型在交通流预测上有效的学习时空依赖问题,文中提出了一种时空图卷积循环网络(ST-GCRN)模型,首先通过时间卷积层以消除冗余的时间信息,其次,将图卷积网络与改进的门控循环网络相结合以获取时空依赖,最后通过加入残差的编解码结构解决模型训练梯度消失等问题,从而提高预测准确率,实现多步预测。在加利福尼亚州高速公路数据集上进行了实验,结果表明,该模型的平均绝对误差与均方根误差对比基准模型分别减少了11%、7.5%。 展开更多
关键词 交通流预测 卷积网络 时间卷积网络 门控循环网络 编解码结构
下载PDF
基于注意力时间卷积网络的加密流量分类
11
作者 金彦亮 陈彦韬 +1 位作者 高塬 周嘉豪 《应用科学学报》 CAS CSCD 北大核心 2024年第4期659-672,共14页
针对目前大多数加密流量分类方法忽略了流量的时序特性和所用模型的效率等问题,提出了一种基于注意力时间卷积网络(attention temporal convolutional network,ATCN)的高效分类方法。该方法首先将流量的内容信息与时序信息共同嵌入模型... 针对目前大多数加密流量分类方法忽略了流量的时序特性和所用模型的效率等问题,提出了一种基于注意力时间卷积网络(attention temporal convolutional network,ATCN)的高效分类方法。该方法首先将流量的内容信息与时序信息共同嵌入模型,增强加密流量的表征;然后利用时间卷积网络并行捕获有效特征以增加训练速度;最后引入注意力机制建立动态特征汇聚,实现模型参数的优化。实验结果表明,该方法在设定的两项分类任务上的性能都优于基准模型,其准确率分别为99.4%和99.8%,且模型参数量最多可降低至基准模型的15%,充分证明了本文方法的先进性。最后,本文在ATCN上引入了一种基于迁移学习的微调方式,为流量分类中零日流量的处理提供了一种新颖的思路。 展开更多
关键词 加密流量分类 时间卷积网络 注意力机制 迁移学习
下载PDF
基于双支路卷积网络的步态识别方法
12
作者 王晓路 千王菲 《计算机应用》 CSCD 北大核心 2024年第6期1965-1971,共7页
针对步态识别易受拍摄视角、外观变化等影响的问题,提出一种基于双支路卷积网络的步态识别方法。首先,提出随机裁剪随机遮挡的数据增强方法RRDA(Restricted Random Data Augmentation),以扩展外观变化的数据样本,提高模型遮挡的鲁棒性;... 针对步态识别易受拍摄视角、外观变化等影响的问题,提出一种基于双支路卷积网络的步态识别方法。首先,提出随机裁剪随机遮挡的数据增强方法RRDA(Restricted Random Data Augmentation),以扩展外观变化的数据样本,提高模型遮挡的鲁棒性;其次,采用结合注意力机制的两路复合卷积层(C-Conv)提取步态特征,一个分支通过水平金字塔映射(HPM)提取行人外观全局和最具辨识度的信息;另一分支通过多个并行的微动作捕捉模块(MCM)提取短时间的步态时空信息;最后,将两个分支的特征信息相加融合,再通过全连接层实现步态识别。基于平衡样本特征的区分能力和模型的收敛性构造联合损失函数,以加速模型的收敛。在CASIA-B步态数据集上进行实验,所提方法在3种行走状态下的平均识别率分别达到97.40%、93.67%和81.19%,均高于GaitSet方法、CapsNet方法、双流步态方法和GaitPart方法;在正常行走状态下比GaitSet方法的识别准确率提升了1.30个百分点,在携带背包状态下提升了2.87个百分点,在穿着外套状态下提升了10.89个百分点。实验结果表明,所提方法是可行、有效的。 展开更多
关键词 步态识别 双支路卷积网络 注意力机制 金字塔映射 深度学习
下载PDF
基于双向时间卷积网络的半监督日志异常检测
13
作者 尹春勇 孔娴 《计算机应用研究》 CSCD 北大核心 2024年第7期2110-2117,共8页
由于日志解析准确率不高以及标记样本不足降低了异常检测的准确率,所以提出了一种新的基于日志的半监督异常检测方法。首先,通过改进字典的日志解析方法,保留了日志事件中的部分参数信息,从而提高日志信息的利用率和日志解析的准确率;然... 由于日志解析准确率不高以及标记样本不足降低了异常检测的准确率,所以提出了一种新的基于日志的半监督异常检测方法。首先,通过改进字典的日志解析方法,保留了日志事件中的部分参数信息,从而提高日志信息的利用率和日志解析的准确率;然后,使用BERT对模板中的语义信息进行编码,获得日志的语义向量;接着采用聚类的方法进行标签估计,缓解了数据标注不足的问题,有效提高了模型对不稳定数据的检测;最后,使用带有残差块的双向时间卷积网络(Bi-TCN)从两个方向捕获上下文信息,提高了异常检测的精度和效率。为了评估该方法的性能,在两个数据集上进行了评估,最终实验结果表明,该方法与最新的三个基准模型LogBERT、PLELog和LogEncoder相比,F 1值平均提高了7%、14.1%和8.04%,能够高效精准地进行日志解析和日志异常检测。 展开更多
关键词 日志解析 异常检测 半监督学习 双向时间卷积网络 上下文相关性
下载PDF
基于Vision Transformer的时空卷积网络设计
14
作者 谢英红 郝岩 +3 位作者 韩晓微 高强 阴彪 王朝辉 《计算机与网络》 2024年第4期283-288,共6页
目前主流人体动作识别大部分都是基于卷积神经网络(Convolutional Neural Network,CNN)实现,而CNN容易忽略视频中的空间位置信息,从而降低了视频空间频域中动作识别能力。同时传统CNN不能快速定位到关键的特征位置,并且在训练过程中不... 目前主流人体动作识别大部分都是基于卷积神经网络(Convolutional Neural Network,CNN)实现,而CNN容易忽略视频中的空间位置信息,从而降低了视频空间频域中动作识别能力。同时传统CNN不能快速定位到关键的特征位置,并且在训练过程中不能并行计算导致效率低。为了解决传统CNN在处理时间频域和多并行计算问题,提出了基于视觉Transformer(Vision Transformer,ViT)和3D卷积网络学习时空特征(Learning Spatiotemporal Features with 3D Convolutional Network,C3D)的人体动作识别算法。使用C3D提取视频的多维特征图、ViT的特征切片窗口对多维特征进行全局特征分割;使用Transformer的编码-解码模块对视频中人体动作进行预测。实验结果表明,所提的人体动作识别算法在UCF-101、HMDB51数据集上提高了动作识别的准确率。 展开更多
关键词 动作识别 视觉Transformer 卷积神经网络 3D卷积网络学习时空特征 注意力机制
下载PDF
交通速度预测时空图卷积网络及其FPGA实现研究
15
作者 谭会生 杨威 严舒琪 《电子测量技术》 北大核心 2024年第18期108-119,共12页
时空图卷积网络(STGCN)通过图卷积和时间卷积捕获交通数据的空间依赖性和时间依赖性,可有效提升交通速度预测的精度。但是硬件实现交通速度预测STGCN具有计算量大难以满足实际应用的实时性要求、资源消耗大导致成本增高等问题,在优化交... 时空图卷积网络(STGCN)通过图卷积和时间卷积捕获交通数据的空间依赖性和时间依赖性,可有效提升交通速度预测的精度。但是硬件实现交通速度预测STGCN具有计算量大难以满足实际应用的实时性要求、资源消耗大导致成本增高等问题,在优化交通速度预测STGCN模型基础上,提出了一种交通速度预测STGCN的FPGA实现结构组合优化的方法。首先,通过轻量化裁剪和预测数据位宽的精确选择,对交通速度预测STGCN进行了模型优化,以降低计算复杂度和资源消耗,并经过Python仿真验证其可行性。其次,通过采用流水线、并行计算和数据交替流水存取等组合优化策略,提出了一种交通速度预测STGCN的FPGA实现结构组合优化的方法,以提升系统计算速度。最后,使用Verilog编程对交通速度预测STGCN进行了FPGA的实现仿真和硬件测试。利用PeMSD7(M)数据集进行实验,结果显示FPGA实现单数据交通速度预测的时间为355.5μs,相比CPU、GPU平台及FPGA设计方案1对比,其处理速度最大分别提高了25.9倍、6.7倍和3.5倍,证明了交通速度预测STGCN的FPGA实现结构组合优化方法,在保持预测准确性的前提下可较大幅度的提升系统处理速度。 展开更多
关键词 交通速度预测 时空图卷积网络 FPGA 硬件实现结构 流水线 并行结构
下载PDF
基于时间卷积网络的机床齿轮箱轴承剩余寿命预测
16
作者 姜广君 段政伟 +1 位作者 穆东明 杨金森 《机床与液压》 北大核心 2024年第12期224-230,共7页
基于深度神经网络的RUL预测模型结构比较复杂,不能很好地满足中长期预测任务的要求。为了更好地利用时间信息,设计一种基于时间卷积网络(TCN)的轴承RUL预测模型。以振动信号的频谱特征作为输入,利用因果膨胀卷积结构提取频域特征并捕获... 基于深度神经网络的RUL预测模型结构比较复杂,不能很好地满足中长期预测任务的要求。为了更好地利用时间信息,设计一种基于时间卷积网络(TCN)的轴承RUL预测模型。以振动信号的频谱特征作为输入,利用因果膨胀卷积结构提取频域特征并捕获长期依赖,从而实现对轴承准确的RUL预测。为了进一步说明所提方法的优越性,将所提方法与卷积神经网络(CNN)、门控循环单元(GRU)进行了对比。结果表明:所提出的TCN模型的RUL预测精度优于其他现有方法,具有较高的精度。 展开更多
关键词 机床齿轮箱轴承 时间卷积网络 时间序列 剩余寿命预测
下载PDF
基于非线性目标函数的时间卷积网络RUL预测
17
作者 刘斌 许靖 +2 位作者 霍美玲 崔学英 谢秀峰 《太原科技大学学报》 2024年第2期211-216,共6页
机械设备剩余使用寿命(RUL)预测是系统维护策略的重要组成部分。在建立深度学习预测方法的目标函数的过程中,退化模型通常以分段线性函数的形式建立,异常值对预测结果的影响很容易被放大。提出了一种基于分段非线性退化的时间卷积网络... 机械设备剩余使用寿命(RUL)预测是系统维护策略的重要组成部分。在建立深度学习预测方法的目标函数的过程中,退化模型通常以分段线性函数的形式建立,异常值对预测结果的影响很容易被放大。提出了一种基于分段非线性退化的时间卷积网络回归模型。非线性函数能较好地描述传感器的退化趋势,减少线性模型预测引起的系统偏差。在美国航天局公布的涡扇发动机(C-MAPSS)数据集上验证了该模型的有效性,实验表明该模型比目标函数为分段线性函数的模型具有更低的误差,优于现有的一些预测方法。 展开更多
关键词 剩余使用寿命预测 深度学习 非线性目标函数 时间卷积网络
下载PDF
改进时间卷积网络下局域网异常状态预测方法
18
作者 葛昕 岳敏楠 《计算机仿真》 2024年第1期438-442,共5页
局域网异常会阻碍网络运行速度,严重时会导致网络瘫痪。为了精准预测局域网是否存在异常,提出一种基于改进时间卷积网络的局域网异常预测方法。组建变分模态分解(Variational Mode Decomposition,VMD)高频噪声分量判定标准,剔除高频分量... 局域网异常会阻碍网络运行速度,严重时会导致网络瘫痪。为了精准预测局域网是否存在异常,提出一种基于改进时间卷积网络的局域网异常预测方法。组建变分模态分解(Variational Mode Decomposition,VMD)高频噪声分量判定标准,剔除高频分量,将剩余VMD分量叠加重构,去除局域网数据中的噪声。建立局域网异常预测模型,将去噪后的局域网数据特征数值规约到和灰度图像像素值对应的范围内,形成局域网灰度图,并将其输入到改进时间卷积网络结构中训练和模型调优,完成局域网异常预测。经实验测试证明,所提方法可以获取高精度和高效率的局域网异常预测结果,在局域网异常预测领域具有广阔的发展前景。 展开更多
关键词 改进时间卷积网络 局域网 改进灰狼优化算法 异常预测 变分模态分解
下载PDF
基于改进注意力机制的时间卷积网络-长短期记忆网络短期电力负荷预测
19
作者 刘伟 王洪志 《电气技术》 2024年第10期8-14,共7页
为充分挖掘蕴含在电力负荷数据中的有效时序信息,提高短期电力负荷预测准确度,本文提出一种基于改进注意力机制的时间卷积网络(TCN)-长短期记忆(LSTM)网络负荷预测模型。首先,将时序数据输入TCN模型中进行时序特征提取;然后,将所提取的... 为充分挖掘蕴含在电力负荷数据中的有效时序信息,提高短期电力负荷预测准确度,本文提出一种基于改进注意力机制的时间卷积网络(TCN)-长短期记忆(LSTM)网络负荷预测模型。首先,将时序数据输入TCN模型中进行时序特征提取;然后,将所提取的时序特征与非时序数据组合,并输入LSTM模型中进行训练;最后,采用贝叶斯优化方法进行超参数寻优以获得TCN-LSTM模型的最优参数,引入通过多层感知器(MLP)改进的注意力机制以减少历史信息丢失并加强重要信息的影响,完成短期负荷预测。通过对比多种深度学习模型的预测效果表明,本文所提模型的短期电力负荷预测准确度更高。 展开更多
关键词 短期电力负荷预测 改进注意力机制 贝叶斯优化 多层感知器(MLP) 时间卷积网络(TCN) 长短期记忆(LSTM)网络
下载PDF
基于改进图时间卷积网络的农村地区电动汽车充电负荷预测及其对农网的影响
20
作者 王子龙 黄莉 《电力需求侧管理》 2024年第5期88-93,共6页
在新能源汽车下乡政策的有力引导下,电动汽车在农村地区的销量快速增长,然而农村电网地域分布广、供电线路长,充电负荷相对分散且难以预测。为此,提出了基于改进图时间卷积网络的农村地区电动汽车充电负荷预测模型。首先,基于图卷积网... 在新能源汽车下乡政策的有力引导下,电动汽车在农村地区的销量快速增长,然而农村电网地域分布广、供电线路长,充电负荷相对分散且难以预测。为此,提出了基于改进图时间卷积网络的农村地区电动汽车充电负荷预测模型。首先,基于图卷积网络构建农村电网图结构矩阵,以表征用户充电特征的空间信息并降低输入数据的维度。其次,引入时间卷积网络感知充电数据的时序信息,挖掘影响负荷预测的时序特征。然后,提出基于注意力机制的改进图时间卷积网络算法进行充电需求预测,对不同特征进行权重分配,提升模型对时空信息的融合学习能力。最后,基于算例结果验证所提方法在农村地区电动汽车充电负荷预测上的有效性,并进一步分析了不同电动汽车渗透率下充电负荷对农村电网的影响。 展开更多
关键词 农村电网 电动汽车 充电负荷预测 卷积网络 时间卷积网络
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部