On the basis of the GPS data obtained from repeated measurements carried out in 2004 and 2007,the horizontal principal strain of the Chinese mainland is calculated,which shows that the direction of principal compressi...On the basis of the GPS data obtained from repeated measurements carried out in 2004 and 2007,the horizontal principal strain of the Chinese mainland is calculated,which shows that the direction of principal compressive strain axis of each subplate is basically consistent with the P-axis of focal mechanism solution and the principal compressive stress axis acquired by geological method.It indicates that the crustal tectonic stress field is relatively stable in regions in a long time.The principal compressive stress axes of Qinghai-Tibet and Xinjiang subplates in the western part of Chinese mainland direct to NS and NNE-SSW,which are controlled by the force from the col-lision of the Eurasia Plate and India Plate.The principal compressive strain axes of Heilongjiang and North China subplates in the eastern part direct to ENE-WSW,which shows that they are subject to the force from the collision and underthrust of the Eurasia Plate to the North America and Pacific plates.At the same time,they are also af-fected by the lateral force from Qinghai-Tibet and Xinjiang subplates.The principal compressive strain axis of South China plate is WNW-ESE,which reflects that it is affected by the force from the collision of Philippine Sea Plate and Eurasia Plate and it is also subject to the lateral force from Qinghai-Tibet subplate.It is apparent from the comparison between the principal compressive strain axes in the periods of 2004~2007 and 2001~2004 that the acting directions of principal compressive stress of subplates in both periods are basically consistent.However,there is certain difference between their directional concentrations of principal compressive stress axes.The sur-face strain rates of different tectonic units in both periods indicate that the events predominating by compressive variation decrease,while the events predominating by tensile change increase.展开更多
Based on energy theory and tests of rocks with initial confining pressures of 10, 20 and 30 MPa under different unloading paths, the processes of strain energy conversion were investigated. The absorbing strain energy...Based on energy theory and tests of rocks with initial confining pressures of 10, 20 and 30 MPa under different unloading paths, the processes of strain energy conversion were investigated. The absorbing strain energy for axial compression, the dissipating strain energy for plastic deformation and cracks propagation, the expending strain energy for circumferential deformation, and the storing and releasing elastic strain energy were considered. Unloading paths included the condition of fixing axial pressure and unloading axial pressure, increasing axial pressure and unloading confining pressure, as well as unloading axial pressure and confining pressure simultaneously. Results show that expending strain energy for circumferential deformation has mainly evolved from absorbing strain energy for axial compression in three unloading paths during unloading processes. Dissipating strain energy is significantly increased only near the peak point. The effect of initial confining pressure on strain energy is significantly higher than that of unloading path. The strain energy is linearly increased with increasing initial confining pressure. The unloading path and initial confining pressure also have great influence on the energy dissipation. The conversion rate of strain energy in three paths is increased with increasing initial confining pressure, and the effect of initial confining pressure on conversion rate of strain energy is related with the unloading paths.展开更多
The hardening curve for sheet metal can be determined from the load-displacement curve of tensile specimen with rectangular cross-section. Therefore,uniaxial compression test on cylinder specimen made from laminated s...The hardening curve for sheet metal can be determined from the load-displacement curve of tensile specimen with rectangular cross-section. Therefore,uniaxial compression test on cylinder specimen made from laminated sample is put forward. Considering the influence of anisotropy on hardening properties and the stress state in popular forming process,plane strain compression test on cubic specimen made from laminated sample was advanced. Results show that the deformation range of hardening curves obtained from the presented methods is wide,which meets the need for the application in sheet metal forming processes. In view of the characteristics of methods presented in the paper and the stress strain state of various forming processes,the adaptability of the two methods presented in this paper is given.展开更多
Effects of strain rate and water-to-cement ratio on the dynamic compressive mechanical behavior of cement mortar are investigated by split Hopkinson pressure bar(SHPB) tests. 124 specimens are subjected to dynamic uni...Effects of strain rate and water-to-cement ratio on the dynamic compressive mechanical behavior of cement mortar are investigated by split Hopkinson pressure bar(SHPB) tests. 124 specimens are subjected to dynamic uniaxial compressive loadings.Strain rate sensitivity of the materials is measured in terms of failure modes, stress-strain curves, compressive strength, dynamic increase factor(DIF) and critical strain at peak stress. A significant change in the stress-strain response of the materials with each order of magnitude increase in strain rate is clearly seen from test results. The slope of the stress-strain curve after peak value for low water-to-cement ratio is steeper than that of high water-to-cement ratio mortar. The compressive strength increases with increasing strain rate. With increase in strain rate, the dynamic increase factor(DIF) increases. However, this increase in DIF with increase in strain rate does not appear to be a function of the water-to-cement ratio. The critical compressive strain increases with the strain rate.展开更多
It is of great significance for safety reason to obtain the triaxial compressive properties of cemented tailings backfill(CTB).The influence of cement content,curing age and confining pressure on strength and deformat...It is of great significance for safety reason to obtain the triaxial compressive properties of cemented tailings backfill(CTB).The influence of cement content,curing age and confining pressure on strength and deformation properties of CTB was examined and discussed.Results indicate that the triaxial compressive and deformation behavior of CTB is strongly affected by the cement content,curing age and confining pressure.The increase in cement content,curing age and confining pressure leads to a change in stress−strain behavior and an increase in the axial strain at failure and post-peak strength loss.The cohesion of CTB rises as the curing age and cement content increase.However,the enhancement in internal friction angle is trivial and negligible.It should be noted that the failure pattern of CTB samples in triaxial compression is mainly along a shear plane,the confining pressure restrains the lateral expansion and the bulging failure pattern is dominantly detected in CTB samples as curing age length and cement content increase.The results will help to better understand the triaxial mechanical and deformation behavior of CTB.展开更多
The particle image velocimetry (PIV) method was used to investigate the full-field displacements and strains of the limestone specimen under external loads from the video images captured during the laboratory tests.Th...The particle image velocimetry (PIV) method was used to investigate the full-field displacements and strains of the limestone specimen under external loads from the video images captured during the laboratory tests.The original colorful video images and experimental data were obtained from the uniaxial compression test of a limestone.To eliminate perspective errors and lens distortion,the camera was placed normal to the rock specimen exposure.After converted into a readable format of frame images,these videos were transformed into the responding grayscale images,and the frame images were then extracted.The full-field displacement field was obtained by using the PIV technique,and interpolated in the sub-pixel locations.The displacement was measured in the plane of the image and inferred from two consecutive images.The local displacement vectors were calculated for small sub-windows of the images by means of cross-correlation.The video images were interrogated in a multi-pass way,starting off with 64×64 images,ending with 16×16 images after 6 iterations,and using 75% overlap of the sub-windows.In order to remove spurious vectors,the displacements were filtered using four filters:signal-to-noise ratio filter,peak height filter,global filter and local filter.The cubic interpolation was utilized if the displacements without a number were encountered.The full-field strain was then obtained using the local least square method from the discrete displacements.The strain change with time at different locations was also investigated.It is found that the normal strains are dependant on the locations and the crack distributions.Between 1.0 and 5.0 s prior to the specimen failure,normal strains increase rapidly at many locations,while a stable status appears at some locations.When the specimen is in a failure status,a large rotation occurs and it increases in the inverse direction.The strain concentration bands do not completely develop into the large cracks,and meso-cracks are not visible in some bands.The techniques presented here may improve the traditional measurement of the strain field,and may provide a lot of valuable information in investigating the deformation/failure mechanism of rock materials.展开更多
The mechanical behavior of plastic concrete used in the cut-off walls of earth dams has been studied. Triaxial compression tests on the specimens in various ages and mix designs under different confining pressures hav...The mechanical behavior of plastic concrete used in the cut-off walls of earth dams has been studied. Triaxial compression tests on the specimens in various ages and mix designs under different confining pressures have been done and the stress-strain behavior of such materials and their strength parameter changes have been experimentally investigated. It has been observed that increasing the confining pressures applied on the specimens causes the material behavior to be alike the more ductile materials and the compressive strength increases considerably as well. Moreover, a parametric study has been carded out to investigate the influence of essential parameters on the shear strength parameters of these materials. According to the research, increasing the coarse to fine aggregates ratio leads to the increase of compressive strength of the specimens as well as the increase of the cohesion and internal friction angle of the materials. Furthermore, the bentonite content decrease and the cement factor increase result in an increase of the cohesion parameter of plastic concretes and decrease of the internal friction angle of such materials.展开更多
The influence of source concrete (SC) with different compression strengths on the workability and mechanical properties of recycled mortar made with river sand substituted by 100% fine recycled concrete aggregates (FR...The influence of source concrete (SC) with different compression strengths on the workability and mechanical properties of recycled mortar made with river sand substituted by 100% fine recycled concrete aggregates (FRCA) is experimentally investigated. The basic physical performance test shows that with the increase in SC strength, FRCA exhibit lower water absorption and crushing index, meanwhile keeping higher densities. Mechanical property tests, including compressive strength, flexural strength and uniaxial compressive stress-strain tests, show that compressive strength,flexural strength and elasticity modulus of recycled sand mortars increase roughly with the increase in SC strength. The proposed mixture design method demonstrates that all of the components can be kept as the same as those in natural mortar mixture design and FRCA must be pre-wetted before making mortar mixture. Meanwhile, the reuse of higher strength SC can ensure that recycled mortar mixtures are able to achieve similar mechanical performance when compared to natural mortar designs.展开更多
Abstract: The hot deformation behaviors of AI-Zn-Mg-Sc-Zr alloy were investigated in a temperature range of 340-500℃ and a strain rate range of 0.001-10 s 1 using uniaxial compression test on Gleeble-1500 thermal si...Abstract: The hot deformation behaviors of AI-Zn-Mg-Sc-Zr alloy were investigated in a temperature range of 340-500℃ and a strain rate range of 0.001-10 s 1 using uniaxial compression test on Gleeble-1500 thermal simulation machine. The results show that the flow stress increases with increasing strain and tends to be constant after a peak value. The flow stress increases with increasing strain rate and decreases with increasing deformation temperature. The phenomenon of dynamic recovery and dynamic recrystallization can be observed by microstructural evolutions. Based on the hyperbolic Arrhenius-type equation, the true stress-true strain data from the tests were employed to establish the constitutive equation considering the effect of the true strain on material constants (α, β, Q, n and A), which reveals the dependence of the flow stress on strain, strain rate and deformation temperature. The predicted stress-strain curves are in good agreement with experimental results, which confirms that the developed constitutive equations are suitable to research the hot deformation behaviors of Al-Zn-Mg-Sc-Zr alloy.展开更多
To investigate the mechanical properties of cement mortar in sodium sulfate and sodium chloride solutions, uniaxial compression test and ultrasonic test were performed. Test results show that the relative dynamic elas...To investigate the mechanical properties of cement mortar in sodium sulfate and sodium chloride solutions, uniaxial compression test and ultrasonic test were performed. Test results show that the relative dynamic elastic modulus, the mass variation,and the compressive strength of cement mortar increase first, and then decrease with increasing erosion time in sodium sulfate and sodium chloride solutions. The relative dynamic elastic moduli and the compressive strengths of cement mortars with water/cement ratios of 0.55 and 0.65 in sodium sulfate solution are lower than those in sodium chloride solution with the same concentration at the420 th day of immersion. The compressive strength of cement mortar with water/cement ratio of 0.65 is more sensitive to strain rate than that with water/cement ratio of 0.55. In addition, the strain-rate sensitivity of compressive strength of cement mortar will increase under attacks of sodium sulfate or sodium chloride solution.展开更多
Strain rate effects on the stress-strain behavior of sand were investigated by performing special plane strain and triaxial compression tests on saturated and air-dried sand specimens. In these tests, the loading stra...Strain rate effects on the stress-strain behavior of sand were investigated by performing special plane strain and triaxial compression tests on saturated and air-dried sand specimens. In these tests, the loading strain rate was changed many times by a factor of up to 1 000 during otherwise monotonous loading at a constant axial strain rate. Test results show that the stress jump upon a stepwise change in the strain rate decays with an increase in the irreversible strain when monotonous loading continues at the changed strain rate and the amount of stress jump is essentially proportional to the instantaneous stress. Based on the amount of these stress jumps, a parameter fl called the rate-sensitivity coefficient is introduced to represent the quantity of the observed viscous properties of sand, which equals 0.021 3 and 0.024 2 respectively for Hostun and Toyoura sands. Further analyses on the results indicate that the effect of the presence of pore water is deemed to be negligible with sand and the fl value is rather independent of loading method, wet condition and confining pressure.展开更多
A moisture-content based constitutive model was proposed based on the hyperbolic model as an attempt to move towards the implementation of unsaturated soil mechanics into routine geotechnical engineering practice. The...A moisture-content based constitutive model was proposed based on the hyperbolic model as an attempt to move towards the implementation of unsaturated soil mechanics into routine geotechnical engineering practice. The stress-strain behavior of in-situ soil at a depth of 5 m was investigated by conducting undrained triaxial compression tests using the remolded soil samples. The test results show that the stress-strain relationship of unsaturated cohesive soil is still hyperbolic. The values of parameters a and b given in the model decrease with increasing the confining pressure for soil samples with the same moisture content and increase with increasing the moisture content for soil samples under the same confining pressure. The relationships between parameters a, b and moisture content were studied for confining pressures of 100, 150, 200 and 250 kPa. The comparison between the measured and predicted stress-strain curves for an additional group of soil samples, having a moisture content of 25.4%, shows that the proposed moisture content-dependent hyperbolic model provides a good prediction of stress-strain behavior of unsaturated cohesive soil.展开更多
The results of investigations of compressed reinforced masonry walls subjected to axial compression are presented. Tests were carried out using specimens made of clay bricks and cement-lime mortar. As reinforcement, s...The results of investigations of compressed reinforced masonry walls subjected to axial compression are presented. Tests were carried out using specimens made of clay bricks and cement-lime mortar. As reinforcement, smooth and spiral twisted longitudinal rods, two types of structural wire mesh and truss type reinforcement were used. Two percentages of bed joint reinforcement, about 0.1% and 0.05% were applied. For each type of reinforcement, three masonry walls were tested. Additionally, nine unreinforced models were also tested. The main aim of the investigations presented is to determine the effect of different types of reinforcement on the load capacity and failure. Measurement of the strains of reinforcing bars permitted the recording of the strain level at the moment of crack appearance and also at the moment of failure.展开更多
In order to investigate the effects of strain rate and temperature on the microstructure and texture evolution during warm deformation of wrought Mg alloy,AZ31 extruded rods were cut into cylinder samples with the dim...In order to investigate the effects of strain rate and temperature on the microstructure and texture evolution during warm deformation of wrought Mg alloy,AZ31 extruded rods were cut into cylinder samples with the dimension of d8 mm×12 mm.The samples were compressed using a Gleeble 1500D thermo-mechanical simulation machine at various strain rates(0.001,0.01,0.1,1 and 5 s- 1)and various temperatures(300,350,400 and 450℃).The microstructure and texture of the compressed samples at the same strain under different deformation conditions were studied and compared by electron backscatter diffraction(EBSD)in scanning electron microscope(SEM).The results show that the size of recrystallized grains in the deformed samples generally increases with the decrease of strain rate and the increase of temperature.After 50%reduction,most basal planes are aligned perpendicular to the compression direction at relatively high strain rate(>0.01 s- 1)or low temperature(<350℃).The optimized strain rate is 0.1 s- 1for uniaxial compression at 300℃,which produces about 80%of small grains(<5μm).展开更多
基金Project of State Science and Technology in the Eleventh "Five-year Plan" (2006BAC01B02-02-03).
文摘On the basis of the GPS data obtained from repeated measurements carried out in 2004 and 2007,the horizontal principal strain of the Chinese mainland is calculated,which shows that the direction of principal compressive strain axis of each subplate is basically consistent with the P-axis of focal mechanism solution and the principal compressive stress axis acquired by geological method.It indicates that the crustal tectonic stress field is relatively stable in regions in a long time.The principal compressive stress axes of Qinghai-Tibet and Xinjiang subplates in the western part of Chinese mainland direct to NS and NNE-SSW,which are controlled by the force from the col-lision of the Eurasia Plate and India Plate.The principal compressive strain axes of Heilongjiang and North China subplates in the eastern part direct to ENE-WSW,which shows that they are subject to the force from the collision and underthrust of the Eurasia Plate to the North America and Pacific plates.At the same time,they are also af-fected by the lateral force from Qinghai-Tibet and Xinjiang subplates.The principal compressive strain axis of South China plate is WNW-ESE,which reflects that it is affected by the force from the collision of Philippine Sea Plate and Eurasia Plate and it is also subject to the lateral force from Qinghai-Tibet subplate.It is apparent from the comparison between the principal compressive strain axes in the periods of 2004~2007 and 2001~2004 that the acting directions of principal compressive stress of subplates in both periods are basically consistent.However,there is certain difference between their directional concentrations of principal compressive stress axes.The sur-face strain rates of different tectonic units in both periods indicate that the events predominating by compressive variation decrease,while the events predominating by tensile change increase.
基金Project(51324744)supported by the National Natural Science Foundation of ChinaProject(71380100006)supported by the Innovation Foundation of Doctoral Student in Hunan Province,China
文摘Based on energy theory and tests of rocks with initial confining pressures of 10, 20 and 30 MPa under different unloading paths, the processes of strain energy conversion were investigated. The absorbing strain energy for axial compression, the dissipating strain energy for plastic deformation and cracks propagation, the expending strain energy for circumferential deformation, and the storing and releasing elastic strain energy were considered. Unloading paths included the condition of fixing axial pressure and unloading axial pressure, increasing axial pressure and unloading confining pressure, as well as unloading axial pressure and confining pressure simultaneously. Results show that expending strain energy for circumferential deformation has mainly evolved from absorbing strain energy for axial compression in three unloading paths during unloading processes. Dissipating strain energy is significantly increased only near the peak point. The effect of initial confining pressure on strain energy is significantly higher than that of unloading path. The strain energy is linearly increased with increasing initial confining pressure. The unloading path and initial confining pressure also have great influence on the energy dissipation. The conversion rate of strain energy in three paths is increased with increasing initial confining pressure, and the effect of initial confining pressure on conversion rate of strain energy is related with the unloading paths.
文摘The hardening curve for sheet metal can be determined from the load-displacement curve of tensile specimen with rectangular cross-section. Therefore,uniaxial compression test on cylinder specimen made from laminated sample is put forward. Considering the influence of anisotropy on hardening properties and the stress state in popular forming process,plane strain compression test on cubic specimen made from laminated sample was advanced. Results show that the deformation range of hardening curves obtained from the presented methods is wide,which meets the need for the application in sheet metal forming processes. In view of the characteristics of methods presented in the paper and the stress strain state of various forming processes,the adaptability of the two methods presented in this paper is given.
基金Project(51479048) supported by National Natural Science Foundation of China
文摘Effects of strain rate and water-to-cement ratio on the dynamic compressive mechanical behavior of cement mortar are investigated by split Hopkinson pressure bar(SHPB) tests. 124 specimens are subjected to dynamic uniaxial compressive loadings.Strain rate sensitivity of the materials is measured in terms of failure modes, stress-strain curves, compressive strength, dynamic increase factor(DIF) and critical strain at peak stress. A significant change in the stress-strain response of the materials with each order of magnitude increase in strain rate is clearly seen from test results. The slope of the stress-strain curve after peak value for low water-to-cement ratio is steeper than that of high water-to-cement ratio mortar. The compressive strength increases with increasing strain rate. With increase in strain rate, the dynamic increase factor(DIF) increases. However, this increase in DIF with increase in strain rate does not appear to be a function of the water-to-cement ratio. The critical compressive strain increases with the strain rate.
基金Projects(2018YFC0808403,2018YFE0123000)supported by the National Key Technologies Research&Development Program of ChinaProject(800015Z1185)supported by the Yueqi Young Scholar Project,ChinaProject(2020YJSNY04)supported by the Fundamental Research Funds for the Central Universities,China。
文摘It is of great significance for safety reason to obtain the triaxial compressive properties of cemented tailings backfill(CTB).The influence of cement content,curing age and confining pressure on strength and deformation properties of CTB was examined and discussed.Results indicate that the triaxial compressive and deformation behavior of CTB is strongly affected by the cement content,curing age and confining pressure.The increase in cement content,curing age and confining pressure leads to a change in stress−strain behavior and an increase in the axial strain at failure and post-peak strength loss.The cohesion of CTB rises as the curing age and cement content increase.However,the enhancement in internal friction angle is trivial and negligible.It should be noted that the failure pattern of CTB samples in triaxial compression is mainly along a shear plane,the confining pressure restrains the lateral expansion and the bulging failure pattern is dominantly detected in CTB samples as curing age length and cement content increase.The results will help to better understand the triaxial mechanical and deformation behavior of CTB.
基金Project(40972191) supported by the National Natural Science Foundation of ChinaProject(09YZ39) supported by the Creative Issue of Shanghai Education Committee,China
文摘The particle image velocimetry (PIV) method was used to investigate the full-field displacements and strains of the limestone specimen under external loads from the video images captured during the laboratory tests.The original colorful video images and experimental data were obtained from the uniaxial compression test of a limestone.To eliminate perspective errors and lens distortion,the camera was placed normal to the rock specimen exposure.After converted into a readable format of frame images,these videos were transformed into the responding grayscale images,and the frame images were then extracted.The full-field displacement field was obtained by using the PIV technique,and interpolated in the sub-pixel locations.The displacement was measured in the plane of the image and inferred from two consecutive images.The local displacement vectors were calculated for small sub-windows of the images by means of cross-correlation.The video images were interrogated in a multi-pass way,starting off with 64×64 images,ending with 16×16 images after 6 iterations,and using 75% overlap of the sub-windows.In order to remove spurious vectors,the displacements were filtered using four filters:signal-to-noise ratio filter,peak height filter,global filter and local filter.The cubic interpolation was utilized if the displacements without a number were encountered.The full-field strain was then obtained using the local least square method from the discrete displacements.The strain change with time at different locations was also investigated.It is found that the normal strains are dependant on the locations and the crack distributions.Between 1.0 and 5.0 s prior to the specimen failure,normal strains increase rapidly at many locations,while a stable status appears at some locations.When the specimen is in a failure status,a large rotation occurs and it increases in the inverse direction.The strain concentration bands do not completely develop into the large cracks,and meso-cracks are not visible in some bands.The techniques presented here may improve the traditional measurement of the strain field,and may provide a lot of valuable information in investigating the deformation/failure mechanism of rock materials.
文摘The mechanical behavior of plastic concrete used in the cut-off walls of earth dams has been studied. Triaxial compression tests on the specimens in various ages and mix designs under different confining pressures have been done and the stress-strain behavior of such materials and their strength parameter changes have been experimentally investigated. It has been observed that increasing the confining pressures applied on the specimens causes the material behavior to be alike the more ductile materials and the compressive strength increases considerably as well. Moreover, a parametric study has been carded out to investigate the influence of essential parameters on the shear strength parameters of these materials. According to the research, increasing the coarse to fine aggregates ratio leads to the increase of compressive strength of the specimens as well as the increase of the cohesion and internal friction angle of the materials. Furthermore, the bentonite content decrease and the cement factor increase result in an increase of the cohesion parameter of plastic concretes and decrease of the internal friction angle of such materials.
基金The National Key Research and Development Programm of China(No.2018YFD1100402-05)the National Natural Science Foundation of China(No.6505000184)
文摘The influence of source concrete (SC) with different compression strengths on the workability and mechanical properties of recycled mortar made with river sand substituted by 100% fine recycled concrete aggregates (FRCA) is experimentally investigated. The basic physical performance test shows that with the increase in SC strength, FRCA exhibit lower water absorption and crushing index, meanwhile keeping higher densities. Mechanical property tests, including compressive strength, flexural strength and uniaxial compressive stress-strain tests, show that compressive strength,flexural strength and elasticity modulus of recycled sand mortars increase roughly with the increase in SC strength. The proposed mixture design method demonstrates that all of the components can be kept as the same as those in natural mortar mixture design and FRCA must be pre-wetted before making mortar mixture. Meanwhile, the reuse of higher strength SC can ensure that recycled mortar mixtures are able to achieve similar mechanical performance when compared to natural mortar designs.
基金Project(2012CB619503)supported by National Basic Research Program of China
文摘Abstract: The hot deformation behaviors of AI-Zn-Mg-Sc-Zr alloy were investigated in a temperature range of 340-500℃ and a strain rate range of 0.001-10 s 1 using uniaxial compression test on Gleeble-1500 thermal simulation machine. The results show that the flow stress increases with increasing strain and tends to be constant after a peak value. The flow stress increases with increasing strain rate and decreases with increasing deformation temperature. The phenomenon of dynamic recovery and dynamic recrystallization can be observed by microstructural evolutions. Based on the hyperbolic Arrhenius-type equation, the true stress-true strain data from the tests were employed to establish the constitutive equation considering the effect of the true strain on material constants (α, β, Q, n and A), which reveals the dependence of the flow stress on strain, strain rate and deformation temperature. The predicted stress-strain curves are in good agreement with experimental results, which confirms that the developed constitutive equations are suitable to research the hot deformation behaviors of Al-Zn-Mg-Sc-Zr alloy.
基金Project(LY13E080021) supported by the Natural Science Foundation of Zhejiang Province,ChinaProject(2011A610072) supported by the Ningbo Municipal Natural Science Foundation,ChinaProject(XKL14D2063) supported by Subject Program of Ningbo University,China
文摘To investigate the mechanical properties of cement mortar in sodium sulfate and sodium chloride solutions, uniaxial compression test and ultrasonic test were performed. Test results show that the relative dynamic elastic modulus, the mass variation,and the compressive strength of cement mortar increase first, and then decrease with increasing erosion time in sodium sulfate and sodium chloride solutions. The relative dynamic elastic moduli and the compressive strengths of cement mortars with water/cement ratios of 0.55 and 0.65 in sodium sulfate solution are lower than those in sodium chloride solution with the same concentration at the420 th day of immersion. The compressive strength of cement mortar with water/cement ratio of 0.65 is more sensitive to strain rate than that with water/cement ratio of 0.55. In addition, the strain-rate sensitivity of compressive strength of cement mortar will increase under attacks of sodium sulfate or sodium chloride solution.
基金Project(50679056) supported by the National Natural Science Foundation of ChinaProject(06-0378) supported by Program for NewCentury Excellent Talents in University+1 种基金Project(05SG25) supported by the "Dawn" Program of Shanghai Education Commission, ChinaProject(B308) supported by the Shanghai Leading Academic Discipline, China
文摘Strain rate effects on the stress-strain behavior of sand were investigated by performing special plane strain and triaxial compression tests on saturated and air-dried sand specimens. In these tests, the loading strain rate was changed many times by a factor of up to 1 000 during otherwise monotonous loading at a constant axial strain rate. Test results show that the stress jump upon a stepwise change in the strain rate decays with an increase in the irreversible strain when monotonous loading continues at the changed strain rate and the amount of stress jump is essentially proportional to the instantaneous stress. Based on the amount of these stress jumps, a parameter fl called the rate-sensitivity coefficient is introduced to represent the quantity of the observed viscous properties of sand, which equals 0.021 3 and 0.024 2 respectively for Hostun and Toyoura sands. Further analyses on the results indicate that the effect of the presence of pore water is deemed to be negligible with sand and the fl value is rather independent of loading method, wet condition and confining pressure.
基金Project(50608038) supported by the National Natural Science Foundation of China
文摘A moisture-content based constitutive model was proposed based on the hyperbolic model as an attempt to move towards the implementation of unsaturated soil mechanics into routine geotechnical engineering practice. The stress-strain behavior of in-situ soil at a depth of 5 m was investigated by conducting undrained triaxial compression tests using the remolded soil samples. The test results show that the stress-strain relationship of unsaturated cohesive soil is still hyperbolic. The values of parameters a and b given in the model decrease with increasing the confining pressure for soil samples with the same moisture content and increase with increasing the moisture content for soil samples under the same confining pressure. The relationships between parameters a, b and moisture content were studied for confining pressures of 100, 150, 200 and 250 kPa. The comparison between the measured and predicted stress-strain curves for an additional group of soil samples, having a moisture content of 25.4%, shows that the proposed moisture content-dependent hyperbolic model provides a good prediction of stress-strain behavior of unsaturated cohesive soil.
文摘The results of investigations of compressed reinforced masonry walls subjected to axial compression are presented. Tests were carried out using specimens made of clay bricks and cement-lime mortar. As reinforcement, smooth and spiral twisted longitudinal rods, two types of structural wire mesh and truss type reinforcement were used. Two percentages of bed joint reinforcement, about 0.1% and 0.05% were applied. For each type of reinforcement, three masonry walls were tested. Additionally, nine unreinforced models were also tested. The main aim of the investigations presented is to determine the effect of different types of reinforcement on the load capacity and failure. Measurement of the strains of reinforcing bars permitted the recording of the strain level at the moment of crack appearance and also at the moment of failure.
基金Project(2007CB613703)supported by the National Basic Research Program of ChinaProject(50890172)supported by the National Natural Science Foundation of China
文摘In order to investigate the effects of strain rate and temperature on the microstructure and texture evolution during warm deformation of wrought Mg alloy,AZ31 extruded rods were cut into cylinder samples with the dimension of d8 mm×12 mm.The samples were compressed using a Gleeble 1500D thermo-mechanical simulation machine at various strain rates(0.001,0.01,0.1,1 and 5 s- 1)and various temperatures(300,350,400 and 450℃).The microstructure and texture of the compressed samples at the same strain under different deformation conditions were studied and compared by electron backscatter diffraction(EBSD)in scanning electron microscope(SEM).The results show that the size of recrystallized grains in the deformed samples generally increases with the decrease of strain rate and the increase of temperature.After 50%reduction,most basal planes are aligned perpendicular to the compression direction at relatively high strain rate(>0.01 s- 1)or low temperature(<350℃).The optimized strain rate is 0.1 s- 1for uniaxial compression at 300℃,which produces about 80%of small grains(<5μm).