支持向量机(SVM)在脑电(EEG)分类中效果较好,其参数寻优方法直接关系着分类的准确率和所需时间。为了探索参数寻优对分类效果的影响,本文采用了固定参数寻优、直接寻优、网格寻优、遗传算法(GA)寻优和粒子群优化算法(PSO)寻优五种参数...支持向量机(SVM)在脑电(EEG)分类中效果较好,其参数寻优方法直接关系着分类的准确率和所需时间。为了探索参数寻优对分类效果的影响,本文采用了固定参数寻优、直接寻优、网格寻优、遗传算法(GA)寻优和粒子群优化算法(PSO)寻优五种参数寻优方法,以BCI Competition IV data 2b数据集进行实验测试,对带通滤波后的数据进行瞬时能量特征的提取,利用五种寻优的参数分类器,得到了9名被试者4~7 s时间内数据的分类准确率和分类所需时间。在用网格寻优和粒子群寻优的分类下,被试S4和被试S8的准确率分别高达96.875%和88.125%,用时最短为3.059 s。直接寻优和固定参数方法的准确率虽低,但分类用时仅为0.002 s和1.305 s,实时性上,更加适合于应用到在线系统中。展开更多
文摘支持向量机(SVM)在脑电(EEG)分类中效果较好,其参数寻优方法直接关系着分类的准确率和所需时间。为了探索参数寻优对分类效果的影响,本文采用了固定参数寻优、直接寻优、网格寻优、遗传算法(GA)寻优和粒子群优化算法(PSO)寻优五种参数寻优方法,以BCI Competition IV data 2b数据集进行实验测试,对带通滤波后的数据进行瞬时能量特征的提取,利用五种寻优的参数分类器,得到了9名被试者4~7 s时间内数据的分类准确率和分类所需时间。在用网格寻优和粒子群寻优的分类下,被试S4和被试S8的准确率分别高达96.875%和88.125%,用时最短为3.059 s。直接寻优和固定参数方法的准确率虽低,但分类用时仅为0.002 s和1.305 s,实时性上,更加适合于应用到在线系统中。