We apply the newly proposed double absorbing boundary condition(DABC)(Hagstrom et al., 2014) to solve the boundary reflection problem in seismic finite-difference(FD) modeling. In the DABC scheme, the local high...We apply the newly proposed double absorbing boundary condition(DABC)(Hagstrom et al., 2014) to solve the boundary reflection problem in seismic finite-difference(FD) modeling. In the DABC scheme, the local high-order absorbing boundary condition is used on two parallel artificial boundaries, and thus double absorption is achieved. Using the general 2D acoustic wave propagation equations as an example, we use the DABC in seismic FD modeling, and discuss the derivation and implementation steps in detail. Compared with the perfectly matched layer(PML), the complexity decreases, and the stability and fl exibility improve. A homogeneous model and the SEG salt model are selected for numerical experiments. The results show that absorption using the DABC is considerably improved relative to the Clayton–Engquist boundary condition and nearly the same as that in the PML.展开更多
This paper deals with absorbing boundary conditions for hyperbolic systems in one and two space dimensions.We prove the strict well-posedness of the resulting initial boundary value problem in 1D.Afterwards we establi...This paper deals with absorbing boundary conditions for hyperbolic systems in one and two space dimensions.We prove the strict well-posedness of the resulting initial boundary value problem in 1D.Afterwards we establish the GKS-stability of the corresponding Lax-Wendroff-type finite difference scheme.Hereby,we have to extend the classical proofs,since the(discretized) absorbing boundary conditions do not fit the standard form of boundary conditions for hyperbolic systems.展开更多
基金supported by the National Nature Science Foundation of China(Grant No.U1262208)the Important National Science & Technology Specific Projects(Grant No.2011ZX05019-008)
文摘We apply the newly proposed double absorbing boundary condition(DABC)(Hagstrom et al., 2014) to solve the boundary reflection problem in seismic finite-difference(FD) modeling. In the DABC scheme, the local high-order absorbing boundary condition is used on two parallel artificial boundaries, and thus double absorption is achieved. Using the general 2D acoustic wave propagation equations as an example, we use the DABC in seismic FD modeling, and discuss the derivation and implementation steps in detail. Compared with the perfectly matched layer(PML), the complexity decreases, and the stability and fl exibility improve. A homogeneous model and the SEG salt model are selected for numerical experiments. The results show that absorption using the DABC is considerably improved relative to the Clayton–Engquist boundary condition and nearly the same as that in the PML.
文摘This paper deals with absorbing boundary conditions for hyperbolic systems in one and two space dimensions.We prove the strict well-posedness of the resulting initial boundary value problem in 1D.Afterwards we establish the GKS-stability of the corresponding Lax-Wendroff-type finite difference scheme.Hereby,we have to extend the classical proofs,since the(discretized) absorbing boundary conditions do not fit the standard form of boundary conditions for hyperbolic systems.