针对步态识别易受拍摄视角、外观变化等影响的问题,提出一种基于双支路卷积网络的步态识别方法。首先,提出随机裁剪随机遮挡的数据增强方法RRDA(Restricted Random Data Augmentation),以扩展外观变化的数据样本,提高模型遮挡的鲁棒性;...针对步态识别易受拍摄视角、外观变化等影响的问题,提出一种基于双支路卷积网络的步态识别方法。首先,提出随机裁剪随机遮挡的数据增强方法RRDA(Restricted Random Data Augmentation),以扩展外观变化的数据样本,提高模型遮挡的鲁棒性;其次,采用结合注意力机制的两路复合卷积层(C-Conv)提取步态特征,一个分支通过水平金字塔映射(HPM)提取行人外观全局和最具辨识度的信息;另一分支通过多个并行的微动作捕捉模块(MCM)提取短时间的步态时空信息;最后,将两个分支的特征信息相加融合,再通过全连接层实现步态识别。基于平衡样本特征的区分能力和模型的收敛性构造联合损失函数,以加速模型的收敛。在CASIA-B步态数据集上进行实验,所提方法在3种行走状态下的平均识别率分别达到97.40%、93.67%和81.19%,均高于GaitSet方法、CapsNet方法、双流步态方法和GaitPart方法;在正常行走状态下比GaitSet方法的识别准确率提升了1.30个百分点,在携带背包状态下提升了2.87个百分点,在穿着外套状态下提升了10.89个百分点。实验结果表明,所提方法是可行、有效的。展开更多
为了减少高光谱图像的训练样本,同时得到更好的分类结果,本文提出了一种基于密集连接网络和空谱变换器的双支路深度网络模型。该模型包含两个支路并行提取图像的空谱特征。首先,两支路分别使用3D和2D卷积对子图像的空间信息和光谱信息...为了减少高光谱图像的训练样本,同时得到更好的分类结果,本文提出了一种基于密集连接网络和空谱变换器的双支路深度网络模型。该模型包含两个支路并行提取图像的空谱特征。首先,两支路分别使用3D和2D卷积对子图像的空间信息和光谱信息进行初步提取,然后经过由批归一化、Mish函数和3D卷积组成的密集连接网络进行深度特征提取。接着两支路分别使用光谱变换器和空间变换器以进一步增强网络提取特征的能力。最后两支路的输出特征图进行融合并得到最终的分类结果。模型在Indian Pines、University of Pavia、Salinas Valley和Kennedy Space Center数据集上进行了测试,并与6种现有方法进行了对比。结果表明,在Indian Pines数据集的训练集比例为3%,其他数据集的训练集比例为0.5%的条件下,算法的总体分类精度分别为95.75%、96.75%、95.63%和98.01%,总体性能优于比较的方法。展开更多
为了满足电力系统对特高压线路可控性和安全性的要求,可以在特高压线路上加装TCSC(Thyristor Controlled Series Capacitor)。而特高压的高电压和大电流对TCSC造成了考验,即大幅度提高TCSC的额定电流时,流过晶闸管阀支路的电流随之增加...为了满足电力系统对特高压线路可控性和安全性的要求,可以在特高压线路上加装TCSC(Thyristor Controlled Series Capacitor)。而特高压的高电压和大电流对TCSC造成了考验,即大幅度提高TCSC的额定电流时,流过晶闸管阀支路的电流随之增加,有可能超过晶闸管的通流能力极限。提出在单TCR(Thyristor Controlled Reactor)支路型TCSC结构上,再增加一条TCR支路实现对大电流分流。TCR支路增加了控制复杂性,首先由于阀控电抗器的制造误差、测量误差等的存在,会引起流过两条TCR支路电流不均流,严重时损坏阀体,故需要增加均流的控制措施;其次阻抗表是TCSC实现阻抗跟踪的基础,计及均流要求的阻抗解析算法复杂度高。在研究双TCR型TCSC基波阻抗特性的基础上,提出了求取阻抗表的简便方法。展开更多
文摘针对步态识别易受拍摄视角、外观变化等影响的问题,提出一种基于双支路卷积网络的步态识别方法。首先,提出随机裁剪随机遮挡的数据增强方法RRDA(Restricted Random Data Augmentation),以扩展外观变化的数据样本,提高模型遮挡的鲁棒性;其次,采用结合注意力机制的两路复合卷积层(C-Conv)提取步态特征,一个分支通过水平金字塔映射(HPM)提取行人外观全局和最具辨识度的信息;另一分支通过多个并行的微动作捕捉模块(MCM)提取短时间的步态时空信息;最后,将两个分支的特征信息相加融合,再通过全连接层实现步态识别。基于平衡样本特征的区分能力和模型的收敛性构造联合损失函数,以加速模型的收敛。在CASIA-B步态数据集上进行实验,所提方法在3种行走状态下的平均识别率分别达到97.40%、93.67%和81.19%,均高于GaitSet方法、CapsNet方法、双流步态方法和GaitPart方法;在正常行走状态下比GaitSet方法的识别准确率提升了1.30个百分点,在携带背包状态下提升了2.87个百分点,在穿着外套状态下提升了10.89个百分点。实验结果表明,所提方法是可行、有效的。
文摘为了减少高光谱图像的训练样本,同时得到更好的分类结果,本文提出了一种基于密集连接网络和空谱变换器的双支路深度网络模型。该模型包含两个支路并行提取图像的空谱特征。首先,两支路分别使用3D和2D卷积对子图像的空间信息和光谱信息进行初步提取,然后经过由批归一化、Mish函数和3D卷积组成的密集连接网络进行深度特征提取。接着两支路分别使用光谱变换器和空间变换器以进一步增强网络提取特征的能力。最后两支路的输出特征图进行融合并得到最终的分类结果。模型在Indian Pines、University of Pavia、Salinas Valley和Kennedy Space Center数据集上进行了测试,并与6种现有方法进行了对比。结果表明,在Indian Pines数据集的训练集比例为3%,其他数据集的训练集比例为0.5%的条件下,算法的总体分类精度分别为95.75%、96.75%、95.63%和98.01%,总体性能优于比较的方法。