针对传统特征匹配算法计算效率低、误匹配率高和双目视觉测量精度不足等问题,提出了一种基于自适应几何约束和随机抽样一致性方法的ORB(Oriented FAST and Rotated BRIEF)红外双目测距方法。首先,通过FAST(Features from Accelerated Se...针对传统特征匹配算法计算效率低、误匹配率高和双目视觉测量精度不足等问题,提出了一种基于自适应几何约束和随机抽样一致性方法的ORB(Oriented FAST and Rotated BRIEF)红外双目测距方法。首先,通过FAST(Features from Accelerated Segment Test)算法与BRIEF(Binary Robust Independent Elementary Features)算法检测并描述关键点,采用快速最近邻搜索的算法完成特征点初始匹配。然后,根据初始匹配点对的斜率与距离选择相应的阈值,构建基于斜率与距离的几何约束,剔除明显错误匹配点对。最后利用随机抽样一致性方法去除异常点完成精匹配,结合热像仪标定参数计算出目标物体的距离。实验结果表明,改进的ORB算法与传统算法相比,具有较好的特征点质量和较高的测量精度,测距平均绝对误差为1.64%,具有较好的实用价值。展开更多
针对双目视觉测距中测量误差大、图像信息单一、实时性差等问题,提出一种基于ORB(oriented fast and rotated brief)特征的双目测距方法。对视频帧进行中值滤波处理,提取图像ORB特征,通过实验选出匹配效果最好的汉明距离。对筛选后的匹...针对双目视觉测距中测量误差大、图像信息单一、实时性差等问题,提出一种基于ORB(oriented fast and rotated brief)特征的双目测距方法。对视频帧进行中值滤波处理,提取图像ORB特征,通过实验选出匹配效果最好的汉明距离。对筛选后的匹配点进行RANSAC(random sample consensus)模型估计,去除误匹配,分析视差和真实距离的模型关系,构建最优的测距模型并在实验平台上进行验证。结果表明:所提方法比其他双目测距方法具有测距精确、运行速度快、鲁棒性强的优势,能够实时显示图中特征的距离信息。展开更多
文摘针对传统特征匹配算法计算效率低、误匹配率高和双目视觉测量精度不足等问题,提出了一种基于自适应几何约束和随机抽样一致性方法的ORB(Oriented FAST and Rotated BRIEF)红外双目测距方法。首先,通过FAST(Features from Accelerated Segment Test)算法与BRIEF(Binary Robust Independent Elementary Features)算法检测并描述关键点,采用快速最近邻搜索的算法完成特征点初始匹配。然后,根据初始匹配点对的斜率与距离选择相应的阈值,构建基于斜率与距离的几何约束,剔除明显错误匹配点对。最后利用随机抽样一致性方法去除异常点完成精匹配,结合热像仪标定参数计算出目标物体的距离。实验结果表明,改进的ORB算法与传统算法相比,具有较好的特征点质量和较高的测量精度,测距平均绝对误差为1.64%,具有较好的实用价值。
文摘针对双目视觉测距中测量误差大、图像信息单一、实时性差等问题,提出一种基于ORB(oriented fast and rotated brief)特征的双目测距方法。对视频帧进行中值滤波处理,提取图像ORB特征,通过实验选出匹配效果最好的汉明距离。对筛选后的匹配点进行RANSAC(random sample consensus)模型估计,去除误匹配,分析视差和真实距离的模型关系,构建最优的测距模型并在实验平台上进行验证。结果表明:所提方法比其他双目测距方法具有测距精确、运行速度快、鲁棒性强的优势,能够实时显示图中特征的距离信息。