相对于传统硅(Si)器件,氮化镓(GaN)功率器件有着更优越的性能,包括更高的开关频率和功率密度及更低的开关损耗等特点。由于高速的开关特性,器件的寄生电容与线路中的寄生电感会发生谐振,从而导致器件两端电压发生过冲和振荡的现象。此...相对于传统硅(Si)器件,氮化镓(GaN)功率器件有着更优越的性能,包括更高的开关频率和功率密度及更低的开关损耗等特点。由于高速的开关特性,器件的寄生电容与线路中的寄生电感会发生谐振,从而导致器件两端电压发生过冲和振荡的现象。此处利用一种双脉冲测试电路,对GaN器件的开关过程进行建模分析,设计合理的缓冲电路有效抑制电压过冲和振荡的问题。最后利用GS66504B GaN E-高电子迁移晶体管(HEMTs)评估板,对缓冲电路设计参数进行实验研究并修正,实验结果验证了缓冲电路方案的有效性。展开更多
文摘相对于传统硅(Si)器件,氮化镓(GaN)功率器件有着更优越的性能,包括更高的开关频率和功率密度及更低的开关损耗等特点。由于高速的开关特性,器件的寄生电容与线路中的寄生电感会发生谐振,从而导致器件两端电压发生过冲和振荡的现象。此处利用一种双脉冲测试电路,对GaN器件的开关过程进行建模分析,设计合理的缓冲电路有效抑制电压过冲和振荡的问题。最后利用GS66504B GaN E-高电子迁移晶体管(HEMTs)评估板,对缓冲电路设计参数进行实验研究并修正,实验结果验证了缓冲电路方案的有效性。