期刊文献+
共找到30篇文章
< 1 2 >
每页显示 20 50 100
基于图像融合和双通道卷积神经网络的配电网故障选线方法研究
1
作者 苏斌 侯思祖 郭威 《电子测量与仪器学报》 CSCD 北大核心 2024年第9期54-66,共13页
针对传统的配电网故障选线方法受限于单一的故障诊断模型,提出一种基于图像融合和双通道卷积神经网络的配电网故障选线方法。研究目的是解决现有方法在面对高阻接地、噪声干扰、分布式电源接地、采样时间不同步等复杂工况时的准确性问... 针对传统的配电网故障选线方法受限于单一的故障诊断模型,提出一种基于图像融合和双通道卷积神经网络的配电网故障选线方法。研究目的是解决现有方法在面对高阻接地、噪声干扰、分布式电源接地、采样时间不同步等复杂工况时的准确性问题。首先,利用格拉姆角和场和格拉姆角差场将零序电流信号转成易于区分故障的二维图像,为图像处理提供了基础。其次,通过图像融合技术将GASF图像和GADF图像进行空间域图像融合,得到一张综合特征图像,充分利用了不同图像的特征,提高了特征表达的丰富性和有效性。接着,构建双通道卷积神经网络模型,其中一维卷积神经网络和ResNet50网络分别用于挖掘零序电流信号和格拉姆角场图像的特征。这种设计充分发挥了不同卷积神经网络在处理一维信号和二维图像时的优势。最后,将融合后的特征输入到Sigmoid函数实现故障线路的筛选。实验结果表明,该方法在各种复杂工况下的表现均优于传统方法,其准确率、Kappa系数、马修斯相关系数、召回率分别达到了99.97%、0.9993、0.9993、0.9995。这些结果表明,该方法不仅具有较高的准确性,还具有良好的鲁棒性和稳定性,能够有效应对高阻接地、噪声干扰、分布式电源接地和采样时间不同步等实际应用中的挑战。提出的方法为配电网故障选线提供了一种新颖且高效的解决方案,具有重要的实际应用价值和广泛的推广前景。 展开更多
关键词 格拉姆角场 故障选线 图像融合 双通道卷积神经网络
下载PDF
基于时频图与双通道卷积神经网络的轴承故障识别模型 被引量:1
2
作者 张政君 井陆阳 +2 位作者 徐卫晓 战卫侠 王晓昆 《机电工程》 CAS 北大核心 2023年第12期1889-1897,共9页
采用传统的信号处理方法难以从轴承振动信号中提取能全面准确反映轴承运行状态的故障特征,并且实际工程中采集的数据量难以满足深度学习方法的要求(需要较大数据量),针对这些问题,提出了一种基于时频图与双通道卷积神经网络(CNN)的轴承... 采用传统的信号处理方法难以从轴承振动信号中提取能全面准确反映轴承运行状态的故障特征,并且实际工程中采集的数据量难以满足深度学习方法的要求(需要较大数据量),针对这些问题,提出了一种基于时频图与双通道卷积神经网络(CNN)的轴承故障识别模型(方法)。首先,基于样本熵和峭度,构造了新的目标函数,利用灰狼优化算法(GWO)对变分模态分解(VMD)方法进行了参数优化,当目标函数达到最小值时,得到了其最优参数组合;然后,使用经过参数优化后的变分模态分解(VMD)方法对轴承信号进行了处理,将处理后得到的模态分量进行了平滑伪Wigner Ville分布(SPWVD)计算,累加其计算结果后,最终得到了轴承的时频图;其次,利用连续小波变换(CWT)直接对原始信号处理得到了时频图;最后,将采用两种方式得到的时频图分别作为双通道CNN的输入,对网络进行了训练,由CNN提取了其时频图特征,并对轴承故障进行了识别分类和诊断。实验结果表明:采用该方法在轴承故障实验中得到的准确率为99.69%,在10次实验中的平均准确率达到了99.61%,相比于单通道CNN和支持向量机(SVM)等方法,该方法有着更高的准确率和更出色的稳定性。研究结果表明:将该方法应用在轴承故障诊断领域,具有准确率高、稳定性强的特点,能够有效地诊断轴承故障。 展开更多
关键词 时频分析方法 变分模态分解 平滑伪Wigner-Ville分布 连续小波变换 双通道卷积神经网络 灰狼优化算法
下载PDF
双通道卷积神经网络在影像融合中的应用 被引量:1
3
作者 靳道明 李路沙 《地理空间信息》 2023年第11期1-4,共4页
利用Landsat8遥感卫星影像数据制作影像融合数据集,提出了一种双通道融合网络,并利用结果影像的质量指数对网络融合性能进行评估,分析与双三次卷积插值和GS影像融合方法的差异。结果表明,该网络加强了对高频空间信息的提取,在更高效提... 利用Landsat8遥感卫星影像数据制作影像融合数据集,提出了一种双通道融合网络,并利用结果影像的质量指数对网络融合性能进行评估,分析与双三次卷积插值和GS影像融合方法的差异。结果表明,该网络加强了对高频空间信息的提取,在更高效提取空间特征的同时,减弱了融合过程中对多光谱影像光谱特征的影响,从而提高了融合影像的综合影像质量(QNR=0.8852)。 展开更多
关键词 深度学习 遥感影像融合 双通道卷积神经网络 多尺度特征
下载PDF
基于双通道卷积神经网络的航班延误预测模型 被引量:28
4
作者 吴仁彪 李佳怡 屈景怡 《计算机应用》 CSCD 北大核心 2018年第7期2100-2106,2112,共8页
针对航班延误预测数据量大、特征提取困难而传统算法处理能力有限的问题,提出一种基于双通道卷积神经网络(DCNN)的航班延误预测模型。首先,该模型将航班数据和气象数据进行融合,应用DCNN进行自动特征提取,采用批归一化(BN)和Padding策... 针对航班延误预测数据量大、特征提取困难而传统算法处理能力有限的问题,提出一种基于双通道卷积神经网络(DCNN)的航班延误预测模型。首先,该模型将航班数据和气象数据进行融合,应用DCNN进行自动特征提取,采用批归一化(BN)和Padding策略优化,提升到港延误等级的分类预测性能;然后,在卷积神经网络(CNN)基础上加入直通通道,以保证特征矩阵的无损传输,增强深度网络的畅通性;同时引入卷积衰减因子对卷积通道的特征矩阵进行稀疏性限制,控制不同网络深度的特征叠加比例,维持模型的稳定性。实验结果表明,所提模型与传统模型相比,具有更强的数据处理能力。通过数据融合,航班延误预测准确率可提高1个百分点;加深网络深度后,该模型能保证梯度的稳定,从而训练更深的网络,使准确率提升至92.1%。该基于DCNN算法的模型特征提取充分,预测性能优于对比模型,可更好地服务于民航决策。 展开更多
关键词 航班延误预测 双通道卷积神经网络 数据融合 直通通道 卷积衰减因子
下载PDF
基于双通道卷积神经网络的多标签图像标注 被引量:6
5
作者 陈立潮 武晨燕 +2 位作者 曹建芳 潘理虎 张英俊 《计算机工程与设计》 北大核心 2019年第12期3601-3607,共7页
针对图像语义标注中存在的训练样本不均衡导致低频标注词标注准确率低的问题,提出一种双通道卷积神经网络模型(double channel convolution neural network,DCCNN)。其中一个通道是为训练低频样本设立的,以此提高低频样本在整个模型中... 针对图像语义标注中存在的训练样本不均衡导致低频标注词标注准确率低的问题,提出一种双通道卷积神经网络模型(double channel convolution neural network,DCCNN)。其中一个通道是为训练低频样本设立的,以此提高低频样本在整个模型中所占比重,另一个通道用于训练全部的训练集。在标注过程中把两个通道的输出进行融合,对所需标注的标注词共同做出决策。在Pascal VOC2012标准数据集上对模型进行验证,实验结果表明,DCCNN模型相对于卷积神经网络(convolution neural network,CNN)无论是对低频标注词的标注准确率还是效率都有很大的提升,验证了该模型的有效性。 展开更多
关键词 图像标注 卷积神经网络 样本不均衡 多标签 双通道卷积神经网络
下载PDF
应用双通道卷积神经网络的地震随机噪声压制方法 被引量:7
6
作者 徐彦凯 刘曾梅 +1 位作者 薛亚茹 曹思远 《石油地球物理勘探》 EI CSCD 北大核心 2022年第4期747-756,I0001,共11页
地震资料中随机噪声的压制一直是人们关注的热点。传统方法难以平衡噪声的去除与有效信号的保护,且执行效率低。为此,提出了基于双通道卷积神经网络的随机噪声压制方法。首先,该网络是一个双通道网络,即由两个结构不同的子网络组成,目... 地震资料中随机噪声的压制一直是人们关注的热点。传统方法难以平衡噪声的去除与有效信号的保护,且执行效率低。为此,提出了基于双通道卷积神经网络的随机噪声压制方法。首先,该网络是一个双通道网络,即由两个结构不同的子网络组成,目的是在压制噪声过程中提取到互补有效信息;其次,在下通道子网络中引入空洞卷积增大感受野,充分捕捉到地震资料中的邻域信息,从而更充分地保留细节信息;最后,借鉴残差学习的思想并使用Swish激活函数,提高了网络的降噪性能。模型和实际资料的实验结果表明,所提方法在有效地压制随机噪声的同时能够保留更丰富的纹理细节信息。 展开更多
关键词 地震资料 随机噪声 双通道卷积神经网络 空洞卷积 激活函数
下载PDF
基于视频分段的空时双通道卷积神经网络的行为识别 被引量:8
7
作者 王萍 庞文浩 《计算机应用》 CSCD 北大核心 2019年第7期2081-2086,共6页
针对原始空时双通道卷积神经网络(CNN)模型对长时段复杂视频中行为识别率低的问题,提出了一种基于视频分段的空时双通道卷积神经网络的行为识别方法。首先将视频分成多个等长不重叠的分段,对每个分段随机采样得到代表视频静态特征的帧... 针对原始空时双通道卷积神经网络(CNN)模型对长时段复杂视频中行为识别率低的问题,提出了一种基于视频分段的空时双通道卷积神经网络的行为识别方法。首先将视频分成多个等长不重叠的分段,对每个分段随机采样得到代表视频静态特征的帧图像和代表运动特征的堆叠光流图像;然后将这两种图像分别输入到空域和时域卷积神经网络进行特征提取,再在两个通道分别融合各视频分段特征得到空域和时域的类别预测特征;最后集成双通道的预测特征得到视频行为识别结果。通过实验讨论了多种数据增强方法和迁移学习方案以解决训练样本不足导致的过拟合问题,分析了不同分段数、预训练网络、分段特征融合方案和双通道集成策略对行为识别性能的影响。实验结果显示所提模型在UCF101数据集上的行为识别准确率达到91.80%,比原始的双通道模型提高了3.8个百分点;同时在HMDB51数据集上的行为识别准确率也比原模型提高,达到61.39%,这表明所提模型能够更好地学习和表达长时段复杂视频中人体行为特征。 展开更多
关键词 双通道卷积神经网络 行为识别 视频分段 迁移学习 特征融合
下载PDF
基于高低维度特征融合的双通道卷积神经网络 被引量:1
8
作者 文元美 罗志鹏 凌永权 《计算机与现代化》 2018年第12期101-105,共5页
为了充分利用图像中所隐藏的特征信息,提出将低级维度特征融合在全连接层,构建出融合了高低级维度特征的双通道卷积神经网络。首先构建一个传统的双通道卷积神经网络,在两通道上设置不同大小的卷积核,将双通道的池化层分别连接到全连接... 为了充分利用图像中所隐藏的特征信息,提出将低级维度特征融合在全连接层,构建出融合了高低级维度特征的双通道卷积神经网络。首先构建一个传统的双通道卷积神经网络,在两通道上设置不同大小的卷积核,将双通道的池化层分别连接到全连接层,同时将两通道卷积神经网络的第一池化层提取的特征也直接送到全连接层,使提取得到的初级和高级特征图在全连接层上进行融合,融合后的数据输入到Softmax分类器进行分类。不同算法在fashion-mnist和CIFAR-10数据库上的对比仿真结果表明,本文模型获得了较高的分类准确率。 展开更多
关键词 特征融合 双通道卷积神经网络 卷积 池化层
下载PDF
基于金字塔式双通道卷积神经网络的深度图像超分辨率重建 被引量:8
9
作者 于淑侠 胡良梅 +1 位作者 张骏 张旭东 《计算机应用研究》 CSCD 北大核心 2020年第8期2541-2546,共6页
针对深度图像分辨率低的问题,构建了一种金字塔式双通道深度图像超分辨率卷积神经网络。在金字塔的每一级,通过两个通道对低分辨率深度图像提取不同的有效特征,通道1为增强型残差结构,可以将丰富的图像细节传递到后面的图层,通道2将不... 针对深度图像分辨率低的问题,构建了一种金字塔式双通道深度图像超分辨率卷积神经网络。在金字塔的每一级,通过两个通道对低分辨率深度图像提取不同的有效特征,通道1为增强型残差结构,可以将丰富的图像细节传递到后面的图层,通道2将不同卷积层提取的特征连接起来作为此通道最后一层卷积层的输入,有益于局部特征和全局特征的结合。接着,通过将不同通道融合后的特征输入亚像素卷积实现超分辨率重建。实验结果表明,相比其他方法,该方法得到的超分辨率图像缓解了边缘失真和伪影问题,有较好的视觉效果。 展开更多
关键词 深度图像 超分辨率重建 双通道卷积神经网络 金字塔式网络结构
下载PDF
基于双通道卷积神经网络的视频目标移除取证算法 被引量:3
10
作者 白珊山 倪蓉蓉 赵耀 《信号处理》 CSCD 北大核心 2020年第9期1415-1421,共7页
针对现有数字视频目标移除取证算法的伪造帧识别准确率低的问题,本文提出了一种基于双通道卷积神经网络的视频目标移除取证算法。该算法利用双通道结构,分别提取视频绝对帧差图像的RGB特征和噪声特征,并利用双线性池化对二者进行特征融... 针对现有数字视频目标移除取证算法的伪造帧识别准确率低的问题,本文提出了一种基于双通道卷积神经网络的视频目标移除取证算法。该算法利用双通道结构,分别提取视频绝对帧差图像的RGB特征和噪声特征,并利用双线性池化对二者进行特征融合,而后通过分类层输出视频帧的分类结果,从而有效地识别经过篡改的视频帧。其中,RGB通道能够发现绝对帧差图像中不自然的篡改边界和对比度,噪声通道能够发现原始区域和篡改区域之间噪声的不一致性。此外,算法在网络前端增加了预处理层来放大篡改视频帧的伪造痕迹。实验结果显示,所提算法有效地提高了伪造视频帧的识别准确率,且相对于传统的单通道网络结构,双通道特征融合的方式取得了更好的检测性能。 展开更多
关键词 数字视频取证 视频目标移除取证 双通道卷积神经网络 Inception-v3网络
下载PDF
双通道卷积神经网络人脸表情识别 被引量:5
11
作者 张琳琳 陈志雨 张啸 《长春工业大学学报》 CAS 2019年第2期142-148,共7页
将卷积神经网络的单通道全连接层改为双通道,构建并训练了一个新的双通道卷积神经网络模型以增强模型的特征表达能力。在全连接层用Maxout激活函数代替传统的ReLU激活函数以优化网络内部结构。在网络训练过程中,采用A-Softmax损失,使卷... 将卷积神经网络的单通道全连接层改为双通道,构建并训练了一个新的双通道卷积神经网络模型以增强模型的特征表达能力。在全连接层用Maxout激活函数代替传统的ReLU激活函数以优化网络内部结构。在网络训练过程中,采用A-Softmax损失,使卷积神经网络能够学习角度判别特征。改进后的卷积神经网络模型在FER2013数据集上准确率为73.6%。 展开更多
关键词 人脸表情识别 深度学习 双通道卷积神经网络 A-Softmax损失
下载PDF
雷达海上目标双通道卷积神经网络特征融合智能检测方法 被引量:15
12
作者 苏宁远 陈小龙 +1 位作者 陈宝欣 关键 《现代雷达》 CSCD 北大核心 2019年第10期47-52,57,共7页
受复杂海洋环境影响,基于统计理论的海面目标检测方法由于假设条件不成立,在实际应用中难以实现高性能检测,本文从特征提取分类角度,通过深度学习分类方法对目标和杂波的雷达回波信号进行二元分类,提出了一种基于双通道卷积神经网络(DCC... 受复杂海洋环境影响,基于统计理论的海面目标检测方法由于假设条件不成立,在实际应用中难以实现高性能检测,本文从特征提取分类角度,通过深度学习分类方法对目标和杂波的雷达回波信号进行二元分类,提出了一种基于双通道卷积神经网络(DCCNN)的雷达海上目标智能检测方法。首先,对实测海杂波和目标雷达信号进行预处理,得到信号的时间-多普勒谱和幅度信息;然后,构建DCCNN对预处理得到的数据进行智能特征提取,得到信号的特征向量,并对不同特征提取模型性能进行测试;最后,通过阈值可设的Softmax分类器作为检测器对特征向量进行分类,实现虚警率的控制。测试结果表明:与传统的单通道CNN以及无虚警控制Hog-SVM分类算法相比,基于二维卷积核VGG16和一维卷积核Le Net的DCCNN特征提取模型和softmax分类器可实现更高的检测性能,并可以实现虚警率控制,为复杂海杂波背景下目标智能检测提供了新的技术途径。 展开更多
关键词 雷达目标检测 海上目标 特征提取 双通道卷积神经网络 虚警可控 分类器
下载PDF
基于双通道卷积神经网络的雷达信号识别 被引量:4
13
作者 全大英 陈赟 +3 位作者 唐泽雨 李世通 汪晓锋 金小萍 《上海交通大学学报》 EI CAS CSCD 北大核心 2022年第7期877-885,共9页
为解决在低信噪比下特征提取困难、雷达信号识别率低的问题,提出了一种基于Choi-Williams分布(CWD)和多重同步压缩变换(MSST)的双通道卷积神经网络模型.模型通过对雷达信号进行CWD和MSST时频分析,分别获取二维时频图像并进行预处理,然... 为解决在低信噪比下特征提取困难、雷达信号识别率低的问题,提出了一种基于Choi-Williams分布(CWD)和多重同步压缩变换(MSST)的双通道卷积神经网络模型.模型通过对雷达信号进行CWD和MSST时频分析,分别获取二维时频图像并进行预处理,然后送入双通道卷积神经网络进行深度特征提取,最后将两路通道获取的特征进行融合,通过卷积神经网络分类器实现对雷达信号的分类识别.仿真结果表明:在信噪比为-10 dB时,所提模型整体识别准确率能达到96%以上,其在低信噪比下表现优异. 展开更多
关键词 低信噪比 Choi-Williams分布 多重同步压缩变换 双通道卷积神经网络
下载PDF
采用双通道卷积神经网络构建的随机脉冲噪声深度降噪模型 被引量:1
14
作者 徐少平 林珍玉 +2 位作者 崔燕 刘蕊蕊 杨晓辉 《电子与信息学报》 EI CSCD 北大核心 2020年第10期2541-2548,共8页
为提高对随机脉冲噪声(RVIN)图像的降噪效果,该文提出一种被称为双通道降噪卷积神经网络(D-DnCNN)的RVIN深度降噪模型。首先,提取多个不同阶对数差值排序(ROLD)统计值及1个边缘特征统计值构成描述图块中心像素点是否为RVIN噪声的噪声感... 为提高对随机脉冲噪声(RVIN)图像的降噪效果,该文提出一种被称为双通道降噪卷积神经网络(D-DnCNN)的RVIN深度降噪模型。首先,提取多个不同阶对数差值排序(ROLD)统计值及1个边缘特征统计值构成描述图块中心像素点是否为RVIN噪声的噪声感知特征矢量。其次,利用预先训练好的深度置信网络(DBN)预测模型实现特征矢量到噪声标签的映射,完成对噪声图像中噪声点的检测。再次,在噪声检测标签的指示下采用Delaunay三角剖分插值算法快速修复噪声像素点从而获得初步复原图像。最后,将初步复原图像作为参考图像与噪声图像联接(concatenate)后输入D-DnCNN模型后获得残差图像,将参考图像减去残差图像即可获得降噪后图像。实验数据表明:D-DnCNN模型在各个噪声比例下的降噪效果均显著超过了现有的经典开关型RVIN降噪算法,与普通的单通道RVIN深度降噪模型相比也有较大幅度提升。 展开更多
关键词 图像处理 随机脉冲噪声 通道降噪卷积神经网络 参考图像 噪声感知特征 噪声检测 插值
下载PDF
基于双通道时频卷积神经网络的故障电弧检测
15
作者 向泽林 杨洋 +1 位作者 李平 阳世群 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第4期192-202,共11页
交流故障电弧产生的高温极易点燃周围的可燃材料,是引发电线火灾的重要原因之一.准确检测不同类型的故障电弧对于预防重大火灾事故的发生具有重要意义.然而故障电弧的复杂性与隐蔽性给检测方法带来了极大挑战.基于阈值和电流特征提取的... 交流故障电弧产生的高温极易点燃周围的可燃材料,是引发电线火灾的重要原因之一.准确检测不同类型的故障电弧对于预防重大火灾事故的发生具有重要意义.然而故障电弧的复杂性与隐蔽性给检测方法带来了极大挑战.基于阈值和电流特征提取的技术难以全面概括故障电弧的特征,而大多数基于深度神经网络的方法直接对电流信号进行特征学习,忽略了信号中的频率信息,从而导致泛化能力差的问题.对此,本文提出了基于时频特征学习的双通道时频卷积神经网络的故障电弧识别方法,设计了可学习的自适应离散小波变换,用于提取一维信号中的多尺度特征,同时通过短时傅里叶变换获取二维的时频图像特征,分别在这2种特征信号上进行卷积,最后将2个通道中学习的特征进行融合,用于分类预测.通过对故障电弧发生器采集到的3种工况下电弧电流信号进行性能评估,验证所提方法的有效性.实验结果表明,该方法与其他同类方法相比具有更高的电弧识别准确率,达到了97.91%. 展开更多
关键词 故障电弧 特征融合 通道时频卷积神经网络 自适应离散小波分解 傅立叶变换
下载PDF
利用双通道卷积神经网络的图像超分辨率算法 被引量:18
16
作者 徐冉 张俊格 黄凯奇 《中国图象图形学报》 CSCD 北大核心 2016年第5期556-564,共9页
目的图像超分辨率算法在实际应用中有着较为广泛的需求和研究。然而传统基于样本的超分辨率算法均使用简单的图像梯度特征表征低分辨率图像块,这些特征难以有效地区分不同的低分辨率图像块。针对此问题,在传统基于样本超分辨率算法的基... 目的图像超分辨率算法在实际应用中有着较为广泛的需求和研究。然而传统基于样本的超分辨率算法均使用简单的图像梯度特征表征低分辨率图像块,这些特征难以有效地区分不同的低分辨率图像块。针对此问题,在传统基于样本超分辨率算法的基础上,提出双通道卷积神经网络学习低分辨率与高分辨率图像块相似度进行图像超分辨率的算法。方法首先利用深度卷积神经网络学习得到有效的低分辨率与高分辨率图像块之间相似性度量,然后根据输入低分辨率图像块与高分辨率图像块字典基元的相似度重构出对应的高分辨率图像块。结果本文算法在Set5和Set14数据集上放大3倍情况下分别取得了平均峰值信噪比(PSNR)为32.53 d B与29.17 d B的效果。结论本文算法从低分辨率与高分辨率图像块相似度学习角度解决图像超分辨率问题,可以更好地保持结果图像中的边缘信息,减弱结果中的振铃现象。本文算法可以很好地适用于自然场景图像的超分辨率增强任务。 展开更多
关键词 图像超分辨率 Pair—wise卷积神经网络 双通道卷积神经网络 图像块相似度学习
原文传递
密集结构改进双通道神经网络的遥感图像配准
17
作者 王东振 陈颖 +1 位作者 李文举 李绩鹏 《计算机应用与软件》 北大核心 2023年第7期229-237,318,共10页
针对部分传统算法对于遥感图像配准精度较低的问题,提出一种密集结构改进双通道卷积神经网络的遥感图像配准方法。对输入的图像采用密集结构改进的双通道卷积神经网络模型进行特征提取;用粒子群算法改进的随机一致性点漂移算法进行特征... 针对部分传统算法对于遥感图像配准精度较低的问题,提出一种密集结构改进双通道卷积神经网络的遥感图像配准方法。对输入的图像采用密集结构改进的双通道卷积神经网络模型进行特征提取;用粒子群算法改进的随机一致性点漂移算法进行特征匹配得到仿射变换系数;使待配准图像能够根据该系数实现变换,达到配准目的。实验表明,改进算法比传统算法的配准精度平均提高了15%以上,对具有显著地貌差异的遥感图像对的配准精度可以有效地提高。 展开更多
关键词 遥感图像 图像配准 密集结构 双通道卷积神经网络 一致性点漂移
下载PDF
基于双通道复数卷积神经网络的DOA估计算法
18
作者 俞帆 陈格格 沈明威 《现代雷达》 CSCD 北大核心 2022年第12期81-86,共6页
针对低信噪比下基于实数卷积神经网络(RV-CNN)的阵列波达方向(DOA)估计方法对接收信号幅相特征提取不充分的问题,引入复数卷积神经网络(CV-CNN)进行DOA估计。为进一步提高分类准确率,构建了一种基于复数卷积神经网络的非对称双通道DOA... 针对低信噪比下基于实数卷积神经网络(RV-CNN)的阵列波达方向(DOA)估计方法对接收信号幅相特征提取不充分的问题,引入复数卷积神经网络(CV-CNN)进行DOA估计。为进一步提高分类准确率,构建了一种基于复数卷积神经网络的非对称双通道DOA估计模型(CV-DCNN)。该模型以阵列接收信号的复数协方差矩阵作为输入,分别输入由空洞卷积层组成的第一通道和由标准卷积层组成的第二通道中,其中空洞卷积在不损失角度信息的情况下,增大特征图的感受野。通过复数卷积神经网络(CV-CNN)独有的复数卷积方式提取和融合信号的幅值和相位特征,将双通道提取的特征融合后通过全连接层和sigmoid函数实现角度分类结果输出。实验结果表明,CV-CNN比RV-CNN有更快的收敛速度,在低信噪比和少快拍条件下,CV-CNN比RV-CNN有更高的估计精度,而CV-DCNN比CV-CNN在收敛速度和估计精度上又有了进一步的提升。 展开更多
关键词 阵列达波方向估计 复数卷积神经网络 复数双通道卷积神经网络 空洞卷积
下载PDF
双通道多感知卷积神经网络图像超分辨率重建 被引量:1
19
作者 王鑫 王翠荣 +1 位作者 王聪 苑迎 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第11期1564-1569,1576,共7页
基于深度卷积神经网络的单幅图像超分辨率重建取得了显著研究成果.但随着深度卷积神经网络规模的不断扩大,如何降低网络构建难度和计算成本成为一个难点.为此,提出了一种双通道多感知卷积神经网络(DMCN)模型.该模型在两条具有不同卷积... 基于深度卷积神经网络的单幅图像超分辨率重建取得了显著研究成果.但随着深度卷积神经网络规模的不断扩大,如何降低网络构建难度和计算成本成为一个难点.为此,提出了一种双通道多感知卷积神经网络(DMCN)模型.该模型在两条具有不同卷积核的通道上建立了稠密连接,并构建了带有动态调节能力的层间融合结构.这种结构的设计使得小规模卷积神经网络便能获得图片特征信息的全面感知能力.实验结果表明,DMCN重建效果优于目前多数具有代表性的重建算法. 展开更多
关键词 单幅图像超分辨率重建 通道多感知卷积神经网络 稠密连接 残差网络 深度学习
下载PDF
基于时频融合多级注意力机制的双通道CNN轴承故障诊断模型
20
作者 冯新 陈儒晖 杨雄 《贵州大学学报(自然科学版)》 2024年第6期70-77,共8页
为进一步提高轴承故障诊断准确率,提出了一种基于快速傅里叶变换(fast fourier transform,FFT)和变分模态分解(variational mode decomposition,VMD),并融合多级注意力机制的双通道卷积神经网络(convolutional neural networks,CNN)模... 为进一步提高轴承故障诊断准确率,提出了一种基于快速傅里叶变换(fast fourier transform,FFT)和变分模态分解(variational mode decomposition,VMD),并融合多级注意力机制的双通道卷积神经网络(convolutional neural networks,CNN)模型用于滚动轴承故障诊断。首先,将一维故障信号经过FFT和VMD处理后进行堆叠,作为双通道CNN的输入;其次,将预处理后的数据分别通过基于通道注意力和全局注意力的二维CNN提取重要特征;再次,利用交叉注意力机制将两个通道提取的特征进行融合;最后,经过全连接层和softmax分类器进行故障诊断。试验结果表明:采用该方法在美国凯斯西储大学10类轴承故障数据集的平均准确率达到100%,其诊断精度优于常见的故障预测模型和单通道模型,有利于促进轴承的智能故障诊断研究和实际应用。 展开更多
关键词 故障诊断 时频融合 注意力机制 双通道卷积神经网络
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部