A study was conducted to analyze the deformation mechanism of strongly weathered quartz schist in the Daliangshan Tunnel,located in the western Transverse Mountain area.A large deformation problem was experienced duri...A study was conducted to analyze the deformation mechanism of strongly weathered quartz schist in the Daliangshan Tunnel,located in the western Transverse Mountain area.A large deformation problem was experienced during the tunnel construction.To mitigate this problem,a support system was designed incorporating negative Poisson ratio(NPR)anchor cables with negative Poisson ratio effect.Physical model experiments,field experiments,and numerical simulation experiments were conducted to investigate the compensation mechanical behavior of NPR anchor cables.The large deformations of soft rocks in the Daliangshan Tunnel are caused by a high ground stress,a high degree of joint fracture development,and a high degree of surrounding rock fragmentation.A compensation mechanics support system combining long and short NPR anchor cables was suggested to provide sufficient counter-support force(approximately 350 kN)for the surrounding rock inside the tunnel.Comparing the NPR anchor cable support system with the original support system used in the Daliangshan tunnel showed that an NPR anchor cable support system,combining cables of 6.3 m and 10.3 m in length,effectively prevented convergence of surrounding rock deformation,and the integrated settlement convergence value remained below 300 mm.This study provides an effective scientific basis for resolving large deformation problems in deeply buried soft rocks in western transverse mountain areas.展开更多
The modeling effects of constituents and dispersoids on the tensile ductility of aluminum alloy were studied.The results show that the tensile ductility decreases with the increase of the volume fraction and size of c...The modeling effects of constituents and dispersoids on the tensile ductility of aluminum alloy were studied.The results show that the tensile ductility decreases with the increase of the volume fraction and size of constituents.Thus,purification can improve the tensile ductility by decreasing the volume fraction of constituents(normally compositions of Fe and Si)and the first-class microcracks.The model also indicates that the tensile ductility decreases with the increase in the volume fraction of dispersoids.Decreasing the volume fraction of dispersoids along the grain boundaries by proper heat-treatment and improving the cohesion strength between dispersoids and matrix can also improve the tensile ductility by decreasing the volume fraction of the second-class microcracks.展开更多
A new similar single-difference mathematical model (SS-DM) and its corresponding algorithmare advanced to solve the deformationof monitoring point directly in singleepoch. The method for building theSSDM is introduced...A new similar single-difference mathematical model (SS-DM) and its corresponding algorithmare advanced to solve the deformationof monitoring point directly in singleepoch. The method for building theSSDM is introduced in detail, and themain error sources affecting the accu-racy of deformation measurement areanalyzed briefly, and the basic algo-rithm and steps of solving the deform-ation are discussed.In order to validate the correctnessand the accuracy of the similar single-difference model, the test with fivedual frequency receivers is carried outon a slideway which moved in plane inFeb. 2001. In the test,five sessions areobserved. The numerical results oftest data show that the advanced mod-el is correct.展开更多
To realize numerical simulation of rolling and obtain the hot forming process parameters for X70 HD steel, the flow stress behaviors of X70 HD steel were investigated under different temperatures(820-1100 ℃ and stra...To realize numerical simulation of rolling and obtain the hot forming process parameters for X70 HD steel, the flow stress behaviors of X70 HD steel were investigated under different temperatures(820-1100 ℃ and strain rates(0.01-10 s-1) on a Gleeble-3500 thermo-simulation machine. A new flow stress model was established. The linear and exponential relationship methods were applied to the parameters with respect to temperature and deformation rates. The rise of curve ends under certain conditions was analyzed. The flow stress of X70 HD steel predicted by the proposed model agrees well with the experimental results. So, it greatly improves the precision of the metal thermoplastic processing through finite element method and practical application of engineering.展开更多
Numerical simulation modeling is a hotspot in the geological engineering computing field. Tak- ing a fast Langrangian analysis of continua in 3 dimensions (FLAC3D) numerical modeling on com- puting the geo-deformati...Numerical simulation modeling is a hotspot in the geological engineering computing field. Tak- ing a fast Langrangian analysis of continua in 3 dimensions (FLAC3D) numerical modeling on com- puting the geo-deformation information caused by the mining subsidence in a coalmine for example, a new GIS-Excel modeling method is proposed to build geologic strata within the simulation range combined with the coal-seam dip angle of the underground mining working-planes. First of all, the coal-seam model of the numerical computing is built by using the geographic information system (GIS) according to the stripe-through principle and the calculating formula on the size of the model blocks in the paper defined, then the FLAC3D numerical computing model of all geologic strata with- in the simulation range is also built based on the calculating formula of thickness of each stratum and the Excel fast computing advantages. The GIS-Excel method is good at the higher modeling accuracy, seldom making mistakes and consuming less time. The reliability and validity of the method is veri- fied well by its practical applications in the coalmine area.展开更多
The properties of nuclei belonging to the α-decay chain of superheavy element ^295118 have been studied in the framework of axially deformed relativistic mean field (RMF) theory with the parameter set of NL-Z2 in t...The properties of nuclei belonging to the α-decay chain of superheavy element ^295118 have been studied in the framework of axially deformed relativistic mean field (RMF) theory with the parameter set of NL-Z2 in the blocked BCS approximation. Some ground state properties such as binding energies, deformations, and α-decay energies Qα have been obtained and agree well with those from finite-range droplet model (FRDM). The single-particle spectra of nuclei in ^295118 α-decay chain show that the shell gaps present obviously nucleon number dependence. The root-mean-square (rms) radii of proton, neutron and matter distributions change slowly from ^283112 to ^295118 but dramatically from ^279110 to ^283112, which may be due to the subshell closure at Z = 110 in ^279110. The α-decay half-lives in 295118 decay chain are evaluated by employing the cluster model and the generalized liquid drop model (GLDM), and the overall agreement is found when they are compared with the known experimental data. The α-decay lifetimes obtained from the cluster model are slightly larger than those of GLDM ones. Finally, we predict the α-decay half-lives of Z=118, 116, 114, 112 isotopes using the cluster model and GLDM, which also indicate these two models can corroborate each other in studies on superheavy nuclei. The results from GLDM are always lower than those obtained from the cluster model.展开更多
The structural health monitoring of a dam is important for maintaining the safe operation and longevity of the dam system. The structural health of a large dam can be monitored from the measured static deformation. Th...The structural health monitoring of a dam is important for maintaining the safe operation and longevity of the dam system. The structural health of a large dam can be monitored from the measured static deformation. This paper presents an investigation of the parameter variations of the identified model of the measured long-term static deformation for the structural health monitoring of Fui-Tsui Dam, which is located in a very active seismic zone of Taiwan. The measured static deformation is characterized as a function of the measured physical parameters, including the effects of hydrostatic pressure and temperature variation. The identified parameters, associated with the effects of hydrostatic pressure and temperature variation, change with environmental factors, such as flooding, earthquake and foundation change.展开更多
This paper describes a general model for the mechanical behavior studying of general wire rope strand. An exact solution of the deformation characteristics was given when the strands is under tensile and torsional loa...This paper describes a general model for the mechanical behavior studying of general wire rope strand. An exact solution of the deformation characteristics was given when the strands is under tensile and torsional loads. The theoretical results are useful in evaluating the extensional and torsional moduli of rigidity for the strands. Finally, a simple design criterion is establised for the nonrotating ropes.展开更多
Regarding excavation-damaged zone (EDZ) around underground opening as non-homogeneous rockmass with spatial deterioration effect on stuffiness and strength, a parametric model of EDZ using radius-displacement-depend...Regarding excavation-damaged zone (EDZ) around underground opening as non-homogeneous rockmass with spatial deterioration effect on stuffiness and strength, a parametric model of EDZ using radius-displacement-dependent deformation modulus (RDDM) was proposed. Considering the nonlinearity characteristic of deformation and locality otherness of surrounding rock, deterioration parameter field of deformation modulus of rockmass around opening was quantitatively calculated through a given function. Applicability for multi-cavern condition and parameter sensibility of the model was analyzed by numerical experiments using synthetic data. Furthermore, the model was applied to identify EDZ of underground caverns of Pubugou hydropower station by calculating deterioration parameter field. Based on the parametric analysis of spatial effect and geological investigation, it is recognized that large radial deformation of deep fractured rock at the spandrel position and insufficient supporting bolts mainly result in great deformation pressure to act on the shotcrete and cause partial crack and spalling. It is shown that deterioration parameter field along the longitudinal axis of main powerhouse is evidently non-homogeneous in space and distributes exponentially along the radius from the opening. The model provides a simple and convenient way to identify the EDZ in the working state for rapid construction feedback analysis and support optimization of underground cavem from quantitative point of view and also aids in interpreting monitoring displacements and estimating support requirements.展开更多
Deformation patterns, shortening amounts and rates in the late Quaternary across the Kalpin thrust system have received tittle attention in the past. This paper attempts to discuss them, mainly in the eastern part of ...Deformation patterns, shortening amounts and rates in the late Quaternary across the Kalpin thrust system have received tittle attention in the past. This paper attempts to discuss them, mainly in the eastern part of the thrust system by doing field investigation along the faults and folds, measuring geomorphic deformation, excavating trenches in several important sites where young alluvial fans were obviously displaced and dating young deposits of alluvial terraces. There are two types of deformation in the surface and near surface for the Kalpin thrust system in the late Quaternary. They are movement of thrust faults on lower angles and bending of young folds. Both kinds of deformation are shown by shortening and uplifting of young geomorphic surfaces. The surface ages of 3 stages are calculated by dating 20 examples using the TL method in the study area and comparing the results of our predecessors on the deposition and incision times of alluvial terraces in the Tianshan mountain which are 100ka B. P., 33 - 18ka B.P. and 6.6 - 8.2ka B.P. respectively for the large-scale deformed alluvial surfaces: T3, T2 and T1 in the Kalpin region. Then, 19 sets of shortening amounts and rates are obtained in 13 sites along 4 rows of anticlines in front of the Kalpin thrust system and Piqiang fold. The shortening amounts and rates show that there are two sections where deformation is stronger than others. The two sections consist of two arcs that are towards the south. The shortening rates near the top of arcs are 1.32mm/a in the west and 1.39mm/a in the east across the thrust system, respectively. In addition, deformation is stronger in the front rows than the rear ones for bifurcate folds.展开更多
To study the grouting reinforcement mechanism in jointed rock slope, first, the theoretical deduction was done to calculate the critical length of slipping if the slope angle is larger than that of joint inclination; ...To study the grouting reinforcement mechanism in jointed rock slope, first, the theoretical deduction was done to calculate the critical length of slipping if the slope angle is larger than that of joint inclination; Second, the numerical calculation model was founded by FLAG^3D, so as to find the stress and deformation responses of rock mass in the state before and after grouting, the analysis results show that the range between the boundary of critical slipping block and the joint plane that passes the slope toe is the effective grouting area (EGA). After excavation, large deformation occurs along the joint plane. After grouting, the displacements of rock particles become uniform and continuous, and large deformations along the joint plane are controlled; the dynamic displacement can re- flect the deformation response of slope during excavation in the state before and after grouting, as well as the shear location of potential slip plane. After grouting, the dynamic displacement of each monitoring point reaches the peak value with very few time steps, which indicate that the parameters of the joint plane, such as strength and stiffness, are improved; the stress field becomes uniform. Tensile area reduces gradually; whole stability of the slope and its ability to resist tensile and shear stress are improved greatly.展开更多
The aim of this paper is to present graphically the behaviour of a simulation model to the varying parameters and to establish the suitability of this representation as a valid tool for the analysis of the same parame...The aim of this paper is to present graphically the behaviour of a simulation model to the varying parameters and to establish the suitability of this representation as a valid tool for the analysis of the same parameters. In this paper, we define parameter combinatorial diagram as the joint graphical representation of all box plots related to the adjustment between real and simulated data, by setting and/or changing the parameters of the simulation model. To do this, we start with a box plot representing the values of an objective adjustment function, achieving these results when varying all the parameters of the simulation model, Then we draw the box plot when setting all the parameters of the model, for example, using the median or average. Later, we get all the box plots when carrying out simulations combining fixed or variable values of the model parameters. Finally, all box plots obtained are represented neatly in a single graph. It is intended that the new parameter combinatorial diagram is used to examine and analyze simulation models useful in practice. This paper presents combinatorial diagrams of different examples of application as in the case of hydrologic models of one, two, three, and five parameters.展开更多
In view of the deviation of the fitting results of the classical exponential model and the hyperbolic model (the BB model) from several experiment data during intermediate stress period, a new constitutive model for...In view of the deviation of the fitting results of the classical exponential model and the hyperbolic model (the BB model) from several experiment data during intermediate stress period, a new constitutive model for the nonlinear normal deformation of rock joints under normal monotonous load is established with flexibility-deformation method. First of all, basic laws of the deformation of joints under normal monotonous load are discussed, based on which three basic conditions which the complete constitutive equation for rock joints under normal load should meet are put forward. The analysis of the modified normal con- stitutive model on stress-deformation curve shows that the general exponential model and the improved hyperbolic model are not complete in math theory. Flexibility-deformation monotone decreasing curve lying between flexibility-deformation curve of the classical exponential model and the BB model is chosen, which meets basic conditions of normal deformation mentioned before, then a new normal deformation constitutive model of rock joints containing three parameters is established. Two main forms of flexibility-deformation curve are analyzed and specific math formulas of the two forms are deduced. Then the range of the parameters in the g-δ model and the g-2 model and the correlative influence factor in geology are preliminarily discussed. Referring to different experiment data, the validating analysis of the g-δ model and the g-γ model shows that the g-2 model can be applied to both the mated joints and unmated joints. Besides, experiment data can be better fit with the g-2 model with respect to the BB model, the classical exponential model and the logarithm model.展开更多
In this paper, a discontinuous numerical model, namely SDDARF3D(three-dimensional spherical discontinuous deformation analysis for rock failure), is proposed for simulating the whole process of rock failure. Firstly, ...In this paper, a discontinuous numerical model, namely SDDARF3D(three-dimensional spherical discontinuous deformation analysis for rock failure), is proposed for simulating the whole process of rock failure. Firstly, within the framework of the classical discontinuous deformation analysis(DDA) method, the formulation of three-dimensional spherical DDA(3D SDDA) is deduced; secondly, a bonding and cracking algorithm is constructed and the SDDARF3 D model is proposed; thirdly, corresponding VC++ calculation code is developed and some verification examples are calculated. The simulated results can intuitively reproduce the failure phenomena of rock mass, indicating that the proposed SDDARF3 D numerical model is correct and effective.展开更多
We study the particle-triaxial-rotor model rotational energy spectrum and with variable moment of inertia deformation feature of very heavy nucleus 249Cm in the band structure and high spin states and locating very ne...We study the particle-triaxial-rotor model rotational energy spectrum and with variable moment of inertia deformation feature of very heavy nucleus 249Cm in the band structure and high spin states and locating very near the we determine the configurations and quadrupole and triaxial calculated results indicate that the high spin band of 249Cm is Such a nucleus is the unique one involving both multisuperheavy region. By calculating the energy spectrum, deformation parameters β and γ of the nucleus. The built upon the v[620]1/2+ configuration with deformation 1- configuration respectively parameters β= 0.296 and γ = 7.5° and the bands based on the v[622]3/2+,v[613]7/2+, v[750]1/2- are also the ones with quite large axial deformation but small triaxial deformation.展开更多
In this paper, we extensively studied a mathematical model of biology. It helps us to understand the dynamical procedure of population changes in biological population model and provides valuable predictions. In this ...In this paper, we extensively studied a mathematical model of biology. It helps us to understand the dynamical procedure of population changes in biological population model and provides valuable predictions. In this model, we establish a variety of exact solutions. To study the exact solutions, we used a fractional complex transform to convert the particular partial differential equation of fractional order into corresponding partial differential equation and modified exp-function method is implemented to investigate the nonlinear equation. Graphical demonstrations along with the numerical data reinforce the efficacy of the used procedure. The specified idea is very effective, unfailing, well-organized and pragmatic for fractional PDEs and could be protracted to further physical happenings.展开更多
基金Project(41941018)supported by the National Natural Science Foundation of China for the Special Project FundingProject(22-JKCF-08)supported by the Study on in-situ Stress Database and 3D in-situ Stress Inversion Technology of Highway Tunnel in Shanxi Province,China+1 种基金Project(2022-JKKJ-6)supported by the Study on Disaster Mechanism and NPR Anchor Cable Prevention and Control of Coal Mining Caving Subsidence in Operating Tunnel in Mountainous Area,ChinaProject(BBJ2024032)supported by the Fundamental Research Funds for the Central Universities(PhD Top Innovative Talents Fund of CUMTB),China。
文摘A study was conducted to analyze the deformation mechanism of strongly weathered quartz schist in the Daliangshan Tunnel,located in the western Transverse Mountain area.A large deformation problem was experienced during the tunnel construction.To mitigate this problem,a support system was designed incorporating negative Poisson ratio(NPR)anchor cables with negative Poisson ratio effect.Physical model experiments,field experiments,and numerical simulation experiments were conducted to investigate the compensation mechanical behavior of NPR anchor cables.The large deformations of soft rocks in the Daliangshan Tunnel are caused by a high ground stress,a high degree of joint fracture development,and a high degree of surrounding rock fragmentation.A compensation mechanics support system combining long and short NPR anchor cables was suggested to provide sufficient counter-support force(approximately 350 kN)for the surrounding rock inside the tunnel.Comparing the NPR anchor cable support system with the original support system used in the Daliangshan tunnel showed that an NPR anchor cable support system,combining cables of 6.3 m and 10.3 m in length,effectively prevented convergence of surrounding rock deformation,and the integrated settlement convergence value remained below 300 mm.This study provides an effective scientific basis for resolving large deformation problems in deeply buried soft rocks in western transverse mountain areas.
基金Project (2005CB623704) supported by National Key Fundamental Research and Development Program of China
文摘The modeling effects of constituents and dispersoids on the tensile ductility of aluminum alloy were studied.The results show that the tensile ductility decreases with the increase of the volume fraction and size of constituents.Thus,purification can improve the tensile ductility by decreasing the volume fraction of constituents(normally compositions of Fe and Si)and the first-class microcracks.The model also indicates that the tensile ductility decreases with the increase in the volume fraction of dispersoids.Decreasing the volume fraction of dispersoids along the grain boundaries by proper heat-treatment and improving the cohesion strength between dispersoids and matrix can also improve the tensile ductility by decreasing the volume fraction of the second-class microcracks.
基金the National Land and Resource Bureau Science and Technology Foundation (No. 20001020304).
文摘A new similar single-difference mathematical model (SS-DM) and its corresponding algorithmare advanced to solve the deformationof monitoring point directly in singleepoch. The method for building theSSDM is introduced in detail, and themain error sources affecting the accu-racy of deformation measurement areanalyzed briefly, and the basic algo-rithm and steps of solving the deform-ation are discussed.In order to validate the correctnessand the accuracy of the similar single-difference model, the test with fivedual frequency receivers is carried outon a slideway which moved in plane inFeb. 2001. In the test,five sessions areobserved. The numerical results oftest data show that the advanced mod-el is correct.
基金Project(51304171)supported by the National Natural Science Foundation of ChinaProject(E2013203248)supported by Natural Science Foundation of Hebei Province of ChinaProject(NECSR-201209)supported by Open Foundation of the National Engineering Research Center for Equipment and Technology of Cold Rolling Strip,China
文摘To realize numerical simulation of rolling and obtain the hot forming process parameters for X70 HD steel, the flow stress behaviors of X70 HD steel were investigated under different temperatures(820-1100 ℃ and strain rates(0.01-10 s-1) on a Gleeble-3500 thermo-simulation machine. A new flow stress model was established. The linear and exponential relationship methods were applied to the parameters with respect to temperature and deformation rates. The rise of curve ends under certain conditions was analyzed. The flow stress of X70 HD steel predicted by the proposed model agrees well with the experimental results. So, it greatly improves the precision of the metal thermoplastic processing through finite element method and practical application of engineering.
基金Supported by the National Natural Science Foundation of China(No.41271436)
文摘Numerical simulation modeling is a hotspot in the geological engineering computing field. Tak- ing a fast Langrangian analysis of continua in 3 dimensions (FLAC3D) numerical modeling on com- puting the geo-deformation information caused by the mining subsidence in a coalmine for example, a new GIS-Excel modeling method is proposed to build geologic strata within the simulation range combined with the coal-seam dip angle of the underground mining working-planes. First of all, the coal-seam model of the numerical computing is built by using the geographic information system (GIS) according to the stripe-through principle and the calculating formula on the size of the model blocks in the paper defined, then the FLAC3D numerical computing model of all geologic strata with- in the simulation range is also built based on the calculating formula of thickness of each stratum and the Excel fast computing advantages. The GIS-Excel method is good at the higher modeling accuracy, seldom making mistakes and consuming less time. The reliability and validity of the method is veri- fied well by its practical applications in the coalmine area.
基金Supported by the Natural Science Foundation of China under Grant Nos.10775061,10505016,10575119,and 10805016the CAS Knowledge Innovation Project under Grant No.KJCX-SYW-N02the Major State Basic Research Developing Program of China under Grant No.2007CB815004
文摘The properties of nuclei belonging to the α-decay chain of superheavy element ^295118 have been studied in the framework of axially deformed relativistic mean field (RMF) theory with the parameter set of NL-Z2 in the blocked BCS approximation. Some ground state properties such as binding energies, deformations, and α-decay energies Qα have been obtained and agree well with those from finite-range droplet model (FRDM). The single-particle spectra of nuclei in ^295118 α-decay chain show that the shell gaps present obviously nucleon number dependence. The root-mean-square (rms) radii of proton, neutron and matter distributions change slowly from ^283112 to ^295118 but dramatically from ^279110 to ^283112, which may be due to the subshell closure at Z = 110 in ^279110. The α-decay half-lives in 295118 decay chain are evaluated by employing the cluster model and the generalized liquid drop model (GLDM), and the overall agreement is found when they are compared with the known experimental data. The α-decay lifetimes obtained from the cluster model are slightly larger than those of GLDM ones. Finally, we predict the α-decay half-lives of Z=118, 116, 114, 112 isotopes using the cluster model and GLDM, which also indicate these two models can corroborate each other in studies on superheavy nuclei. The results from GLDM are always lower than those obtained from the cluster model.
文摘The structural health monitoring of a dam is important for maintaining the safe operation and longevity of the dam system. The structural health of a large dam can be monitored from the measured static deformation. This paper presents an investigation of the parameter variations of the identified model of the measured long-term static deformation for the structural health monitoring of Fui-Tsui Dam, which is located in a very active seismic zone of Taiwan. The measured static deformation is characterized as a function of the measured physical parameters, including the effects of hydrostatic pressure and temperature variation. The identified parameters, associated with the effects of hydrostatic pressure and temperature variation, change with environmental factors, such as flooding, earthquake and foundation change.
文摘This paper describes a general model for the mechanical behavior studying of general wire rope strand. An exact solution of the deformation characteristics was given when the strands is under tensile and torsional loads. The theoretical results are useful in evaluating the extensional and torsional moduli of rigidity for the strands. Finally, a simple design criterion is establised for the nonrotating ropes.
基金Project(2010CB732005) supported by the National Basic Research Program of ChinaProjects(51279136, 51209164) supported by the National Natural Science Foundation of China
文摘Regarding excavation-damaged zone (EDZ) around underground opening as non-homogeneous rockmass with spatial deterioration effect on stuffiness and strength, a parametric model of EDZ using radius-displacement-dependent deformation modulus (RDDM) was proposed. Considering the nonlinearity characteristic of deformation and locality otherness of surrounding rock, deterioration parameter field of deformation modulus of rockmass around opening was quantitatively calculated through a given function. Applicability for multi-cavern condition and parameter sensibility of the model was analyzed by numerical experiments using synthetic data. Furthermore, the model was applied to identify EDZ of underground caverns of Pubugou hydropower station by calculating deterioration parameter field. Based on the parametric analysis of spatial effect and geological investigation, it is recognized that large radial deformation of deep fractured rock at the spandrel position and insufficient supporting bolts mainly result in great deformation pressure to act on the shotcrete and cause partial crack and spalling. It is shown that deterioration parameter field along the longitudinal axis of main powerhouse is evidently non-homogeneous in space and distributes exponentially along the radius from the opening. The model provides a simple and convenient way to identify the EDZ in the working state for rapid construction feedback analysis and support optimization of underground cavem from quantitative point of view and also aids in interpreting monitoring displacements and estimating support requirements.
基金The research was sponsored by"Special Project of Emergency Response to the MS 6 .8 Bachu-Jiashi , Xinjiang Earthquake"of China Earthquake Administration
文摘Deformation patterns, shortening amounts and rates in the late Quaternary across the Kalpin thrust system have received tittle attention in the past. This paper attempts to discuss them, mainly in the eastern part of the thrust system by doing field investigation along the faults and folds, measuring geomorphic deformation, excavating trenches in several important sites where young alluvial fans were obviously displaced and dating young deposits of alluvial terraces. There are two types of deformation in the surface and near surface for the Kalpin thrust system in the late Quaternary. They are movement of thrust faults on lower angles and bending of young folds. Both kinds of deformation are shown by shortening and uplifting of young geomorphic surfaces. The surface ages of 3 stages are calculated by dating 20 examples using the TL method in the study area and comparing the results of our predecessors on the deposition and incision times of alluvial terraces in the Tianshan mountain which are 100ka B. P., 33 - 18ka B.P. and 6.6 - 8.2ka B.P. respectively for the large-scale deformed alluvial surfaces: T3, T2 and T1 in the Kalpin region. Then, 19 sets of shortening amounts and rates are obtained in 13 sites along 4 rows of anticlines in front of the Kalpin thrust system and Piqiang fold. The shortening amounts and rates show that there are two sections where deformation is stronger than others. The two sections consist of two arcs that are towards the south. The shortening rates near the top of arcs are 1.32mm/a in the west and 1.39mm/a in the east across the thrust system, respectively. In addition, deformation is stronger in the front rows than the rear ones for bifurcate folds.
基金Supported by the National Natural Science Foundation of China (50099620, 40804027)
文摘To study the grouting reinforcement mechanism in jointed rock slope, first, the theoretical deduction was done to calculate the critical length of slipping if the slope angle is larger than that of joint inclination; Second, the numerical calculation model was founded by FLAG^3D, so as to find the stress and deformation responses of rock mass in the state before and after grouting, the analysis results show that the range between the boundary of critical slipping block and the joint plane that passes the slope toe is the effective grouting area (EGA). After excavation, large deformation occurs along the joint plane. After grouting, the displacements of rock particles become uniform and continuous, and large deformations along the joint plane are controlled; the dynamic displacement can re- flect the deformation response of slope during excavation in the state before and after grouting, as well as the shear location of potential slip plane. After grouting, the dynamic displacement of each monitoring point reaches the peak value with very few time steps, which indicate that the parameters of the joint plane, such as strength and stiffness, are improved; the stress field becomes uniform. Tensile area reduces gradually; whole stability of the slope and its ability to resist tensile and shear stress are improved greatly.
文摘The aim of this paper is to present graphically the behaviour of a simulation model to the varying parameters and to establish the suitability of this representation as a valid tool for the analysis of the same parameters. In this paper, we define parameter combinatorial diagram as the joint graphical representation of all box plots related to the adjustment between real and simulated data, by setting and/or changing the parameters of the simulation model. To do this, we start with a box plot representing the values of an objective adjustment function, achieving these results when varying all the parameters of the simulation model, Then we draw the box plot when setting all the parameters of the model, for example, using the median or average. Later, we get all the box plots when carrying out simulations combining fixed or variable values of the model parameters. Finally, all box plots obtained are represented neatly in a single graph. It is intended that the new parameter combinatorial diagram is used to examine and analyze simulation models useful in practice. This paper presents combinatorial diagrams of different examples of application as in the case of hydrologic models of one, two, three, and five parameters.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50879063 and 50979081) the National Basic Research Program of China ("973" Program) (Grant No. 2011CB013501)
文摘In view of the deviation of the fitting results of the classical exponential model and the hyperbolic model (the BB model) from several experiment data during intermediate stress period, a new constitutive model for the nonlinear normal deformation of rock joints under normal monotonous load is established with flexibility-deformation method. First of all, basic laws of the deformation of joints under normal monotonous load are discussed, based on which three basic conditions which the complete constitutive equation for rock joints under normal load should meet are put forward. The analysis of the modified normal con- stitutive model on stress-deformation curve shows that the general exponential model and the improved hyperbolic model are not complete in math theory. Flexibility-deformation monotone decreasing curve lying between flexibility-deformation curve of the classical exponential model and the BB model is chosen, which meets basic conditions of normal deformation mentioned before, then a new normal deformation constitutive model of rock joints containing three parameters is established. Two main forms of flexibility-deformation curve are analyzed and specific math formulas of the two forms are deduced. Then the range of the parameters in the g-δ model and the g-2 model and the correlative influence factor in geology are preliminarily discussed. Referring to different experiment data, the validating analysis of the g-δ model and the g-γ model shows that the g-2 model can be applied to both the mated joints and unmated joints. Besides, experiment data can be better fit with the g-2 model with respect to the BB model, the classical exponential model and the logarithm model.
基金supported by the Key Research Program of the Chinese Academy of Sciences(Grant No.KZZD-EW-05-03)the National Basic Research Program of China("973"Project)(Grant No.2011CB710602)the National Natural Science Foundation of China(Grant Nos.51139004&40972201)
文摘In this paper, a discontinuous numerical model, namely SDDARF3D(three-dimensional spherical discontinuous deformation analysis for rock failure), is proposed for simulating the whole process of rock failure. Firstly, within the framework of the classical discontinuous deformation analysis(DDA) method, the formulation of three-dimensional spherical DDA(3D SDDA) is deduced; secondly, a bonding and cracking algorithm is constructed and the SDDARF3 D model is proposed; thirdly, corresponding VC++ calculation code is developed and some verification examples are calculated. The simulated results can intuitively reproduce the failure phenomena of rock mass, indicating that the proposed SDDARF3 D numerical model is correct and effective.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 10935001 and 11075052the National Fund for Fostering Talents of Basic Science with Grant No. J1030310the Major State Basic Research Development Program under Grant No. G2007CB815000
文摘We study the particle-triaxial-rotor model rotational energy spectrum and with variable moment of inertia deformation feature of very heavy nucleus 249Cm in the band structure and high spin states and locating very near the we determine the configurations and quadrupole and triaxial calculated results indicate that the high spin band of 249Cm is Such a nucleus is the unique one involving both multisuperheavy region. By calculating the energy spectrum, deformation parameters β and γ of the nucleus. The built upon the v[620]1/2+ configuration with deformation 1- configuration respectively parameters β= 0.296 and γ = 7.5° and the bands based on the v[622]3/2+,v[613]7/2+, v[750]1/2- are also the ones with quite large axial deformation but small triaxial deformation.
文摘In this paper, we extensively studied a mathematical model of biology. It helps us to understand the dynamical procedure of population changes in biological population model and provides valuable predictions. In this model, we establish a variety of exact solutions. To study the exact solutions, we used a fractional complex transform to convert the particular partial differential equation of fractional order into corresponding partial differential equation and modified exp-function method is implemented to investigate the nonlinear equation. Graphical demonstrations along with the numerical data reinforce the efficacy of the used procedure. The specified idea is very effective, unfailing, well-organized and pragmatic for fractional PDEs and could be protracted to further physical happenings.