In this paper, we have successfully extended the Jacobian elliptic function expansion approach to nonlinear differential-difference equations. The Hybrid lattice equation is chosen to illustrate this approach. As a co...In this paper, we have successfully extended the Jacobian elliptic function expansion approach to nonlinear differential-difference equations. The Hybrid lattice equation is chosen to illustrate this approach. As a consequence, twelve families of Jacobian elliptic function solutions with different parameters of the Hybrid lattice equation are obtained. When the modulus m → 1 or O, doubly-periodic solutions degenerate to solitonic solutions and trigonometric function solutions, respectively.展开更多
文摘In this paper, we have successfully extended the Jacobian elliptic function expansion approach to nonlinear differential-difference equations. The Hybrid lattice equation is chosen to illustrate this approach. As a consequence, twelve families of Jacobian elliptic function solutions with different parameters of the Hybrid lattice equation are obtained. When the modulus m → 1 or O, doubly-periodic solutions degenerate to solitonic solutions and trigonometric function solutions, respectively.