A hybrid finite-discrete element method was implemented to study the fracture process of rough rock joints under direct shearing. The hybrid method reproduced the joint shear resistance evolution process from asperity...A hybrid finite-discrete element method was implemented to study the fracture process of rough rock joints under direct shearing. The hybrid method reproduced the joint shear resistance evolution process from asperity sliding to degradation and from gouge formation to grinding. It is found that, in the direct shear test of rough rock joints under constant normal displacement loading conditions, higher shearing rate promotes the asperity degradation but constraints the volume dilation, which then results in higher peak shear resistance, more gouge formation and grinding, and smoother new joint surfaces. Moreover, it is found that the joint roughness affects the joint shear resistance evolution through influencing the joint fracture micro mechanism. The asperity degradation and gouge grinding are the main failure micro-mechanism in shearing rougher rock joints with deeper asperities while the asperity sliding is the main failure micro-mechanism in shearing smoother rock joints with shallower asperities. It is concluded that the hybrid finite-discrete element method is a valuable numerical tool better than traditional finite element method and discrete element method for modelling the joint sliding, asperity degradation, gouge formation, and gouge grinding occurred in the direct shear tests of rough rock joints.展开更多
In this work the authors simulate a contaminant transport problem in three dimensions that takes place in the soil of waste disposals. Such problem is modeled by a diffusion-dominated equation. The solution of this eq...In this work the authors simulate a contaminant transport problem in three dimensions that takes place in the soil of waste disposals. Such problem is modeled by a diffusion-dominated equation. The solution of this equation is addressed by using mixed finite element method for the spatial discretization of the equation. The resulting linear algebraic system is handled by an iterative domain decomposition procedure. This procedure is naturally parallelizable, and permits to implement computational codes in distributed memory machines in order to save on CPU time. Numerical results of the serial and parallel codes were compared with experimental results, and their performance measures were evaluated. The results indicate that the parallelizable procedure is an efficient tool for performing simulations of the problem.展开更多
基金The first author would like to thank the supports of the NARGS, IRGS and AAS grants of Australia, and the National Science Foundation grants (No. 51574060 and No. 51079017) of China, in which the first author is the intemational collaborator. The academic visits of the third and fourth authors to the University of Tasmania are partly supported by a PhD visiting scholarship and an academic visiting scholarship, respectively, provided by the China Scholarship Council, which are greatly appreciated.
文摘A hybrid finite-discrete element method was implemented to study the fracture process of rough rock joints under direct shearing. The hybrid method reproduced the joint shear resistance evolution process from asperity sliding to degradation and from gouge formation to grinding. It is found that, in the direct shear test of rough rock joints under constant normal displacement loading conditions, higher shearing rate promotes the asperity degradation but constraints the volume dilation, which then results in higher peak shear resistance, more gouge formation and grinding, and smoother new joint surfaces. Moreover, it is found that the joint roughness affects the joint shear resistance evolution through influencing the joint fracture micro mechanism. The asperity degradation and gouge grinding are the main failure micro-mechanism in shearing rougher rock joints with deeper asperities while the asperity sliding is the main failure micro-mechanism in shearing smoother rock joints with shallower asperities. It is concluded that the hybrid finite-discrete element method is a valuable numerical tool better than traditional finite element method and discrete element method for modelling the joint sliding, asperity degradation, gouge formation, and gouge grinding occurred in the direct shear tests of rough rock joints.
文摘In this work the authors simulate a contaminant transport problem in three dimensions that takes place in the soil of waste disposals. Such problem is modeled by a diffusion-dominated equation. The solution of this equation is addressed by using mixed finite element method for the spatial discretization of the equation. The resulting linear algebraic system is handled by an iterative domain decomposition procedure. This procedure is naturally parallelizable, and permits to implement computational codes in distributed memory machines in order to save on CPU time. Numerical results of the serial and parallel codes were compared with experimental results, and their performance measures were evaluated. The results indicate that the parallelizable procedure is an efficient tool for performing simulations of the problem.