With the aid of computerized symbolic computation, an improved F-expansion method is presented to uniformly construct more new exact doubly periodic solutions in terms of rational formal Jscobi elliptic function of no...With the aid of computerized symbolic computation, an improved F-expansion method is presented to uniformly construct more new exact doubly periodic solutions in terms of rational formal Jscobi elliptic function of nonlinear partial differential equations (NPDFs). The coupled Drinfel'd-Sokolov-Wilson equation is chosen to illustrate the method. As a result, we can successfully obtain abundant new doubly periodic solutions without calculating various Jacobi elliptic functions. In the limit cases, the rational solitary wave solutions and trigonometric function solutions are obtained as well.展开更多
By using F-expansion method proposed recently, we derive the periodic wave solution expressed by Jacobi elliptic functions for Konopelchenko-Dubrovsky equation. In the limit case, the solitary wave solution and other ...By using F-expansion method proposed recently, we derive the periodic wave solution expressed by Jacobi elliptic functions for Konopelchenko-Dubrovsky equation. In the limit case, the solitary wave solution and other type of the traveling wave solutions are derived.展开更多
In this paper, we investigate symmetries of the new (4+1)-dimensional Fokas equation, including point symmetries and the potential symmetries. We firstly employ the algorithmic procedure of computing the point symm...In this paper, we investigate symmetries of the new (4+1)-dimensional Fokas equation, including point symmetries and the potential symmetries. We firstly employ the algorithmic procedure of computing the point symmetries. And then we transform the Fokas equation into a potential system and gain the potential symmetries of Fokas equation. Finally, we use the obtained point symmetries wave solutions and other solutions of the Fokas equation. and some constructive methods to get some doubly periodic In particular, some solitary wave solutions are also given.展开更多
With the aid of symbolic computation system Maple, some families of new rational variable separation solutions of the (2+1)-dimensional dispersive long wave equations are constructed by means of a function transfor...With the aid of symbolic computation system Maple, some families of new rational variable separation solutions of the (2+1)-dimensional dispersive long wave equations are constructed by means of a function transformation, improved mapping approach, and variable separation approach, among which there are rational solitary wave solutions, periodic wave solutions and rational wave solutions.展开更多
An algebraic method is proposed to solve a new (2+1)-dimensional Calogero KdV equation and explicitly construct a series of exact solutions including rational solutions, triangular solutions, exponential solution, lin...An algebraic method is proposed to solve a new (2+1)-dimensional Calogero KdV equation and explicitly construct a series of exact solutions including rational solutions, triangular solutions, exponential solution, line soliton solutions, and doubly periodic wave solutions.展开更多
In this letter, abundant families of Jacobi elliptic function envelope solutions of the N-coupled nonlinear Schroedinger (NLS) system are obtained directly. When the modulus m → 1, those periodic solutions degenera...In this letter, abundant families of Jacobi elliptic function envelope solutions of the N-coupled nonlinear Schroedinger (NLS) system are obtained directly. When the modulus m → 1, those periodic solutions degenerate as the corresponding envelope soliton solutions, envelope shock wave solutions. Especially, for the 3-coupled NLS system, five types of Jacobi elliptic function envelope solutions are illustrated both analytically and graphically. Two types of those degenerate as envelope soliton solutions.展开更多
By constructing appropriate transformations and an extended elliptic sub-equation approach, we find some exact solutions of variable coefficient cubic-quintie nonlinear Schrodinger equation with an external potential,...By constructing appropriate transformations and an extended elliptic sub-equation approach, we find some exact solutions of variable coefficient cubic-quintie nonlinear Schrodinger equation with an external potential, which include bell and kink profile solitary wave solutions, singular solutions, triangular periodic wave solutions and so on.展开更多
By means of the standard truncated Painlevé expansion and a variable separation approach, a general variable separation solution of the generalized Burgers system is derived. In addition to the usual localized co...By means of the standard truncated Painlevé expansion and a variable separation approach, a general variable separation solution of the generalized Burgers system is derived. In addition to the usual localized coherent soliton excitations like dromions, lumps, rings, breathers, instantons, oscillating soliton excitations, peakons, foldons, and previously revealed chaotic and fractal localized solutions, some new types of excitations — compacton and Jacobi periodic wave solutions are obtained by introducing appropriate lower dimensional piecewise smooth functions and Jacobi elliptic functions.展开更多
In this paper,the generalized Boussinesq wave equation u tt-uxx+a(um) xx+buxxxx=0 is investigated by using the bifurcation theory and the method of phase portraits analysis.Under the different parameter conditions,the...In this paper,the generalized Boussinesq wave equation u tt-uxx+a(um) xx+buxxxx=0 is investigated by using the bifurcation theory and the method of phase portraits analysis.Under the different parameter conditions,the exact explicit parametric representations for solitary wave solutions and periodic wave solutions are obtained.展开更多
基金supported by National Natural Science Foundation of China under Grant No.10771118
文摘With the aid of computerized symbolic computation, an improved F-expansion method is presented to uniformly construct more new exact doubly periodic solutions in terms of rational formal Jscobi elliptic function of nonlinear partial differential equations (NPDFs). The coupled Drinfel'd-Sokolov-Wilson equation is chosen to illustrate the method. As a result, we can successfully obtain abundant new doubly periodic solutions without calculating various Jacobi elliptic functions. In the limit cases, the rational solitary wave solutions and trigonometric function solutions are obtained as well.
基金Supported by the Natural Science Foundation of Education Committee of Henan Province(2003110003)Supported by the Natural Science Foundation of Henan Province(0111050200)
文摘By using F-expansion method proposed recently, we derive the periodic wave solution expressed by Jacobi elliptic functions for Konopelchenko-Dubrovsky equation. In the limit case, the solitary wave solution and other type of the traveling wave solutions are derived.
基金supported by the National Natural Science Foundation of China under Grant No.60821002the National Key Basic Research Program of China under Grant No.2004CB318000
文摘In this paper, we investigate symmetries of the new (4+1)-dimensional Fokas equation, including point symmetries and the potential symmetries. We firstly employ the algorithmic procedure of computing the point symmetries. And then we transform the Fokas equation into a potential system and gain the potential symmetries of Fokas equation. Finally, we use the obtained point symmetries wave solutions and other solutions of the Fokas equation. and some constructive methods to get some doubly periodic In particular, some solitary wave solutions are also given.
基金supported by the Scientific Research Foundation of Beijing Information Science and Technology UniversityScientific Creative Platform Foundation of Beijing Municipal Commission of Education
文摘With the aid of symbolic computation system Maple, some families of new rational variable separation solutions of the (2+1)-dimensional dispersive long wave equations are constructed by means of a function transformation, improved mapping approach, and variable separation approach, among which there are rational solitary wave solutions, periodic wave solutions and rational wave solutions.
文摘An algebraic method is proposed to solve a new (2+1)-dimensional Calogero KdV equation and explicitly construct a series of exact solutions including rational solutions, triangular solutions, exponential solution, line soliton solutions, and doubly periodic wave solutions.
基金The project partially supported by the Foundation of Zhejiang University of Technology, the Education Foundation of Zhejiang Province of China under Grant No. 2003055, and the Foundation of Zhejiang Forestry College under Grant No. 2002FK15 Acknowledgments We would like to express our sincere thanks to the referees for useful suggestion and timely help.
文摘In this letter, abundant families of Jacobi elliptic function envelope solutions of the N-coupled nonlinear Schroedinger (NLS) system are obtained directly. When the modulus m → 1, those periodic solutions degenerate as the corresponding envelope soliton solutions, envelope shock wave solutions. Especially, for the 3-coupled NLS system, five types of Jacobi elliptic function envelope solutions are illustrated both analytically and graphically. Two types of those degenerate as envelope soliton solutions.
基金supported by National Natural Science Foundation of China under Grant No.10172056
文摘By constructing appropriate transformations and an extended elliptic sub-equation approach, we find some exact solutions of variable coefficient cubic-quintie nonlinear Schrodinger equation with an external potential, which include bell and kink profile solitary wave solutions, singular solutions, triangular periodic wave solutions and so on.
基金The project supported by National Natural Science Foundation of China under Grant No.10172056+2 种基金the Natural Science Foundation of Zhengjiang Provincethe Foundation of Zhengjiang Lishui College under Grant Nos.KZ03009 and KZ03005
文摘By means of the standard truncated Painlevé expansion and a variable separation approach, a general variable separation solution of the generalized Burgers system is derived. In addition to the usual localized coherent soliton excitations like dromions, lumps, rings, breathers, instantons, oscillating soliton excitations, peakons, foldons, and previously revealed chaotic and fractal localized solutions, some new types of excitations — compacton and Jacobi periodic wave solutions are obtained by introducing appropriate lower dimensional piecewise smooth functions and Jacobi elliptic functions.
基金Supported by the National Natural Science Foundation of China under Grant No. 10974160the Scientific Research Foundation of the Education Department of Sichuan Province of China under Grant No. 10ZA004
文摘In this paper,the generalized Boussinesq wave equation u tt-uxx+a(um) xx+buxxxx=0 is investigated by using the bifurcation theory and the method of phase portraits analysis.Under the different parameter conditions,the exact explicit parametric representations for solitary wave solutions and periodic wave solutions are obtained.