期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于DFT的频率敏感双分支Transformer多变量长时间序列预测方法
1
作者 任烈弘 黄铝文 +1 位作者 田旭 段飞 《计算机应用》 CSCD 北大核心 2024年第9期2739-2746,共8页
在进行多变量长时间序列预测时,仅利用时域分析通常无法充分捕捉长时间序列依赖,而这会导致信息利用率不足、预测精度不够高。因此,结合频域时域分析,提出一种基于离散傅里叶变换(DFT)的频率敏感双分支多变量长时间序列预测(FSDformer)... 在进行多变量长时间序列预测时,仅利用时域分析通常无法充分捕捉长时间序列依赖,而这会导致信息利用率不足、预测精度不够高。因此,结合频域时域分析,提出一种基于离散傅里叶变换(DFT)的频率敏感双分支多变量长时间序列预测(FSDformer)方法。首先,通过DFT实现时间和频率的相互转换,从而将复杂的时间序列数据分解为结构简单的低频趋势项、中频季节项和高频余项3个分量;其次,采用双分支结构,针对中高频分量预测,应用Encoder-Decoder结构,设计了周期性增强注意力机制;针对低频趋势分量预测,采用多层感知机(MLP)结构;最后将中高频分量与低频分量预测结果相加,得到多变量长时间序列的最终预测结果。在2个数据集上把FSDformer与其他5个经典算法进行了对比分析,在Electricity数据集上,当历史序列长度为96,预测序列长度为336时,相较于Autoformer等对比算法,FSDformer的平均绝对误差(MAE)下降了11.5%~29.1%,均方误差(MSE)下降了20.9%~43.7%,达到了最优预测精度。实验结果表明,FSDformer能有效捕捉长时间序列的相关依赖,在提升预测精度和计算效率的同时,增强了模型预测的稳定性。 展开更多
关键词 离散傅里叶变换 频率敏感 时间序列预测 序列分解 TRANSFORMER 周期性增强注意力
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部