A novel method under the interactive multiple model (IMM) filtering framework is presented in this paper, in which the expectation-maximization (EM) algorithm is used to identify the process noise covariance Q online....A novel method under the interactive multiple model (IMM) filtering framework is presented in this paper, in which the expectation-maximization (EM) algorithm is used to identify the process noise covariance Q online. For the existing IMM filtering theory, the matrix Q is determined by means of design experience, but Q is actually changed with the state of the maneuvering target. Meanwhile it is severely influenced by the environment around the target, i.e., it is a variable of time. Therefore, the experiential covariance Q can not represent the influence of state noise in the maneuvering process exactly. Firstly, it is assumed that the evolved state and the initial conditions of the system can be modeled by using Gaussian distribution, although the dynamic system is of a nonlinear measurement equation, and furthermore the EM algorithm based on IMM filtering with the Q identification online is proposed. Secondly, the truncated error analysis is performed. Finally, the Monte Carlo simulation results are given to show that the proposed algorithm outperforms the existing algorithms and the tracking precision for the maneuvering targets is improved efficiently.展开更多
At present, almost all the systems and products for speech recognition are working in quiet environment and their performances are degraded or even can′t work when they are operated in high noisy environment. In this...At present, almost all the systems and products for speech recognition are working in quiet environment and their performances are degraded or even can′t work when they are operated in high noisy environment. In this paper, after analyzing the features of speech and noise, a speech enhancement method for LPC autoregressive model for command words recognition used in noisy environment is proposed, and an experimental system is realized. In different background noisy environments, we conduct experiments about SNR, basic accuracy, noise resistant ability and system environment adaptability with different microphones. The experimental results show that the system has good recognition performance in high noisy environments. The system can resist many kinds of noises and meet the needs of application areas on the whole such as military, traffic, marketplace and factory etc.展开更多
Independent component analysis was applied to analyze the acoustic signals from diesel engine. First the basic prin-ciple of independent component analysis (ICA) was reviewed. Diesel engine acoustic signal was decompo...Independent component analysis was applied to analyze the acoustic signals from diesel engine. First the basic prin-ciple of independent component analysis (ICA) was reviewed. Diesel engine acoustic signal was decomposed into several inde-pendent components (ICs); Fourier transform and continuous wavelet transform (CWT) were applied to analyze the independent components. Different noise sources of the diesel engine were separated, based on the characteristics of different component in time-frequency domain.展开更多
The performance of automatic speech recognizer degrades seriously when there are mismatches between the training and testing conditions. Vector Taylor Series (VTS) approach has been used to compensate mismatches cau...The performance of automatic speech recognizer degrades seriously when there are mismatches between the training and testing conditions. Vector Taylor Series (VTS) approach has been used to compensate mismatches caused by additive noise and convolutive channel distortion in the cepstral domain, in this paper, the conventional VTS is extended by incorporating noise clustering into its EM iteration procedure, improving its compensation effectiveness under non-stationary noisy environments. Recognition experiments under babble and exhibition noisy environments demonstrate that the new algorithm achieves 35% average error rate reduction compared with the conventional VTS.展开更多
On the base of auditory neural system, the network model on the processing of the sound wave is presented. The mathematic equation of the network is also discussed. In the network model, in addition to the negative fe...On the base of auditory neural system, the network model on the processing of the sound wave is presented. The mathematic equation of the network is also discussed. In the network model, in addition to the negative feedback of the neural cell in the output layer, the cell in the input layer excites the corresponding cell in the ontput layer meanwhile it inhibits the lateral cells. The network has its advantage on the processing of sound wave. In addition to filter the noise, it can search the significance frequency segments (Barks). The "channel suppresser" feature, the special phenomena of the human ear, is explained based on the model. The learning algorithm of the network model is discussed, too. In the end, an example is introduced about the application of the network.展开更多
This work is concerned with identification of systems that are subject to not only measurement noises, but also structural uncertainties such as unmodeled dynamics, sensor nonlinear mismatch, and observation bins. Ide...This work is concerned with identification of systems that are subject to not only measurement noises, but also structural uncertainties such as unmodeled dynamics, sensor nonlinear mismatch, and observation bins. Identification errors are analyzed for their dependence on these structural uncertainties. Asymptotic distributions of scaled sequences of estimation errors are derived.展开更多
基金Supported by the National Key Fundamental Research & Development Programs of P. R. China (2001CB309403)
文摘A novel method under the interactive multiple model (IMM) filtering framework is presented in this paper, in which the expectation-maximization (EM) algorithm is used to identify the process noise covariance Q online. For the existing IMM filtering theory, the matrix Q is determined by means of design experience, but Q is actually changed with the state of the maneuvering target. Meanwhile it is severely influenced by the environment around the target, i.e., it is a variable of time. Therefore, the experiential covariance Q can not represent the influence of state noise in the maneuvering process exactly. Firstly, it is assumed that the evolved state and the initial conditions of the system can be modeled by using Gaussian distribution, although the dynamic system is of a nonlinear measurement equation, and furthermore the EM algorithm based on IMM filtering with the Q identification online is proposed. Secondly, the truncated error analysis is performed. Finally, the Monte Carlo simulation results are given to show that the proposed algorithm outperforms the existing algorithms and the tracking precision for the maneuvering targets is improved efficiently.
文摘At present, almost all the systems and products for speech recognition are working in quiet environment and their performances are degraded or even can′t work when they are operated in high noisy environment. In this paper, after analyzing the features of speech and noise, a speech enhancement method for LPC autoregressive model for command words recognition used in noisy environment is proposed, and an experimental system is realized. In different background noisy environments, we conduct experiments about SNR, basic accuracy, noise resistant ability and system environment adaptability with different microphones. The experimental results show that the system has good recognition performance in high noisy environments. The system can resist many kinds of noises and meet the needs of application areas on the whole such as military, traffic, marketplace and factory etc.
基金Project (No. 50575203) supported by the National Natural ScienceFoundation of China
文摘Independent component analysis was applied to analyze the acoustic signals from diesel engine. First the basic prin-ciple of independent component analysis (ICA) was reviewed. Diesel engine acoustic signal was decomposed into several inde-pendent components (ICs); Fourier transform and continuous wavelet transform (CWT) were applied to analyze the independent components. Different noise sources of the diesel engine were separated, based on the characteristics of different component in time-frequency domain.
文摘The performance of automatic speech recognizer degrades seriously when there are mismatches between the training and testing conditions. Vector Taylor Series (VTS) approach has been used to compensate mismatches caused by additive noise and convolutive channel distortion in the cepstral domain, in this paper, the conventional VTS is extended by incorporating noise clustering into its EM iteration procedure, improving its compensation effectiveness under non-stationary noisy environments. Recognition experiments under babble and exhibition noisy environments demonstrate that the new algorithm achieves 35% average error rate reduction compared with the conventional VTS.
基金Shanghai Natural Research Foundation (No.06dz15003)
文摘On the base of auditory neural system, the network model on the processing of the sound wave is presented. The mathematic equation of the network is also discussed. In the network model, in addition to the negative feedback of the neural cell in the output layer, the cell in the input layer excites the corresponding cell in the ontput layer meanwhile it inhibits the lateral cells. The network has its advantage on the processing of sound wave. In addition to filter the noise, it can search the significance frequency segments (Barks). The "channel suppresser" feature, the special phenomena of the human ear, is explained based on the model. The learning algorithm of the network model is discussed, too. In the end, an example is introduced about the application of the network.
文摘This work is concerned with identification of systems that are subject to not only measurement noises, but also structural uncertainties such as unmodeled dynamics, sensor nonlinear mismatch, and observation bins. Identification errors are analyzed for their dependence on these structural uncertainties. Asymptotic distributions of scaled sequences of estimation errors are derived.