期刊文献+
共找到1,113篇文章
< 1 2 56 >
每页显示 20 50 100
广义回归神经网络修正GNSS垂向坐标时间序列环境负荷效应
1
作者 高菡 匡翠林 楚彬 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2024年第9期3357-3366,共10页
环境负荷通常会引起GNSS垂向坐标时间序列发生非线性变化,对其影响进行精细改正是GNSS坐标时间序列研究中的一项重要内容.传统的物理模型环境负荷改正方法在模型建立与参数求解等过程中需引入部分简化与近似,导致改正不够精细.本文引入... 环境负荷通常会引起GNSS垂向坐标时间序列发生非线性变化,对其影响进行精细改正是GNSS坐标时间序列研究中的一项重要内容.传统的物理模型环境负荷改正方法在模型建立与参数求解等过程中需引入部分简化与近似,导致改正不够精细.本文引入数据驱动的广义回归神经网络(Generalized Regression Neural Network,GRNN)方法改善环境负荷修正效果.以川滇地区GNSS测站的垂向坐标时间序列为研究对象,首先基于变分贝叶斯独立分量分析(Variational Bayesian Independent Component Analysis,vbICA)技术分离坐标序列,分析得到周期性分量,发现大气及陆地储水负荷是引起测站坐标发生季节性变化的重要原因.然后通过GRNN建立与大气及陆地储水相关的环境因素数据和坐标时间序列数据之间的关联,进而消除坐标时间序列中两种环境负荷的影响.经数据驱动的GRNN建模修正大气及陆地储水负荷影响后,各测站坐标残差序列的RMS值平均降低了21.56%,而采用传统的物理模型方法修正后平均降低幅度仅为9.29%,可认为基于GRNN方法的改正效果更好.另外顾及地下温度、冰浓度、比湿、降雨率四种气候因素的影响建立GRNN模型,结果表明地下温度因素对川滇地区GNSS测站垂向坐标影响稍大. 展开更多
关键词 GNSS坐标时间序列 环境负荷 广义回归神经网络 数据驱动
下载PDF
基于回归神经网络的卫星信号监测系统健康状态评估模型
2
作者 高丽 李洋 +3 位作者 田宇 翟建勇 麻军伟 张伟 《现代导航》 2024年第4期249-253,267,共6页
卫星信号地面监测系统无人值守、长期运行的特点,以及设备数量众多、交互复杂的现实状态使得对监测系统健康状态进行评估至关重要。通过对监测系统运行数据进行合理设计和处理,设计并训练回归神经网络学习挖掘监测系统运行数据的内在规... 卫星信号地面监测系统无人值守、长期运行的特点,以及设备数量众多、交互复杂的现实状态使得对监测系统健康状态进行评估至关重要。通过对监测系统运行数据进行合理设计和处理,设计并训练回归神经网络学习挖掘监测系统运行数据的内在规律,从而实现监测系统全生命周期内健康状态评估预测,对运行数据表达出系统出现故障隐患的状态进行识别,达到故障预警的效果,从而将监测系统的事后运维方式提前至事前运维,减少监测系统故障发生率,有利于提高监测系统稳定可靠能力。 展开更多
关键词 地面监测系统 健康状态预测 回归神经网络
下载PDF
基于鹈鹕优化算法优化广义回归神经网络的电动汽车充电负荷短期预测
3
作者 陈晓华 吴杰康 +2 位作者 张勋祥 龙泳丞 王志平 《山东电力技术》 2024年第7期1-9,共9页
针对目前电动汽车充电负荷预测精度不足的问题,提出了一种结合互补集合经验模态分解和鹈鹕优化算法优化广义回归神经网络的组合预测方法。首先,利用互补集合经验模态分解将电动汽车充电负荷时间序列分解成多个固有模态函数分量和一个残... 针对目前电动汽车充电负荷预测精度不足的问题,提出了一种结合互补集合经验模态分解和鹈鹕优化算法优化广义回归神经网络的组合预测方法。首先,利用互补集合经验模态分解将电动汽车充电负荷时间序列分解成多个固有模态函数分量和一个残差分量。其次,对于分解后的固有模态分量容易出现冗杂信息,利用样本熵对分解后数值相近的固有模态分量进行相加重构,降低冗杂程度。最后,考虑广义回归神经网络的预测效果与平滑因子的数值有很大关系,利用鹈鹕优化算法优化广义回归神经网络的平滑因子,进而对电动汽车充电负荷进行短期预测。仿真表明,所提出的预测方法可以有效地提高电动汽车充电负荷的预测精度,具有较高的实用性。 展开更多
关键词 广义回归神经网络 鹈鹕优化算法 电动汽车充电负荷 短期预测 互补集合经验模态分解
下载PDF
基于木材振动特性的月琴声学品质广义回归神经网络预测模型
4
作者 杨扬 《森林工程》 北大核心 2024年第4期160-167,共8页
泡桐木始终是制造乐器谐振元件的重要材料,对乐器的音质有着重要的影响。采用广义回归神经网络(General Regression Neural Network,GRNN)建立基于共鸣板振动性能的月琴音质评价模型。以制造出的9把月琴为研究对象,根据月琴的音质评价... 泡桐木始终是制造乐器谐振元件的重要材料,对乐器的音质有着重要的影响。采用广义回归神经网络(General Regression Neural Network,GRNN)建立基于共鸣板振动性能的月琴音质评价模型。以制造出的9把月琴为研究对象,根据月琴的音质评价以及制备月琴的共鸣板信息,提出月琴音质的预测模型。在180组数据中,随机抽取135组数据进行训练,其余45组数据进行验证。使用主成分分析方法、GRNN建立月琴声学质量评价模型,并进行仿真预测。结果表明,基于共鸣板的振动特性,利用Matlab仿真可以实现对月琴音质的预测,预测的准确率可达到91.41%。此外,研究还表明,泡桐木共鸣板的动态弹性模量、声辐射阻尼系数、弹性模量、剪切模量比、声阻抗,损耗角正切和声转化率等参数均是影响其制备成品月琴声学质量的重要因素。 展开更多
关键词 广义回归神经网络 主成分分析 声学品质 振动特性 共鸣板 木材 民族乐器
下载PDF
基于广义回归神经网络的风力发电场设备温度自适应预测方法
5
作者 张二辉 徐兴朝 +1 位作者 郑卫剑 贾政 《自动化与仪表》 2024年第10期72-75,共4页
传统预测方法很难有效处理风力发电场设备温度各种影响因素之间的非线性关系,从而导致预测结果的不准确。针对上述问题,研究一种基于广义回归神经网络的风力发电场设备温度自适应预测方法。分析风力发电场设备温度影响因素并收集这些因... 传统预测方法很难有效处理风力发电场设备温度各种影响因素之间的非线性关系,从而导致预测结果的不准确。针对上述问题,研究一种基于广义回归神经网络的风力发电场设备温度自适应预测方法。分析风力发电场设备温度影响因素并收集这些因素对应的数据,组成样本,对样本实施离群值处理和归一化处理。利用广义回归神经网络自适应预测设备温度并利用鸽群优化算法(PIO算法)自适应调整广义回归神经网络预测模型参数——平滑因子σ,提高其自适应能力。结果表明,所研究方法的预测偏度最高误差仅为0.3℃,说明该方法在预测温度时具有良好的准确性,预测值接近实际值。 展开更多
关键词 广义回归神经网络 风力发电场 设备温度 PIO算法 自适应预测方法
下载PDF
粒子群算法优化的广义回归神经网络求解流形学习样本外点问题
6
作者 黄红兵 《乐山师范学院学报》 2024年第4期1-7,共7页
目前流形学习已成功应用于降维和数据可视化领域,但在监督分类中的应用效果并不理想,解决好样本外点问题对其应用效果至关重要。基于此,采用粒子群算法优化广义回归神经网络计算测试样本的低维嵌入,获得的结果可直接用于分类。借助粒子... 目前流形学习已成功应用于降维和数据可视化领域,但在监督分类中的应用效果并不理想,解决好样本外点问题对其应用效果至关重要。基于此,采用粒子群算法优化广义回归神经网络计算测试样本的低维嵌入,获得的结果可直接用于分类。借助粒子群算法的全局搜索能力对处理样本外点问题具有较好的预测性能;在使用糖尿病、虹膜和声呐三个公开数据集的实验中,粒子群算法优化广义回归神经网络的分类总体精度分别为77.63%、100%和88.89%,优于其他8种分类方法,表明该算法可行、有效;同时,该算法能显著降低数据复杂度,提高了预测、模式分类和机器学习的准确性。 展开更多
关键词 粒子群算法 广义回归神经网络 流形学习 数据降维 样本外点问题
下载PDF
基于广义回归神经网络插值的雷达引信回波模拟
7
作者 王洋洋 曹菲 《火箭军工程大学学报》 2024年第5期69-80,共12页
为了更加精确地对雷达引信回波信号进行模拟,以北京市密云区数字高程模型(Digital Elevation Model, DEM)作为地形研究数据进行插值分析和回波模拟,提出了使用广义回归神经网络(Generalized Regression Neural Network,GRNN)进行插值的... 为了更加精确地对雷达引信回波信号进行模拟,以北京市密云区数字高程模型(Digital Elevation Model, DEM)作为地形研究数据进行插值分析和回波模拟,提出了使用广义回归神经网络(Generalized Regression Neural Network,GRNN)进行插值的方法。在插值后的DEM仿真地形上,考虑地形起伏对雷达引信回波遮挡的影响,仿真得到传统插值算法和GRNN插值算法下的雷达引信回波图,通过内插精度和回波分析了算法性能。结果表明:在地貌类型以平原、丘陵为主的地区,相较于传统算法,本文算法能够描绘地形细节,更加精确地模拟回波分布规律。 展开更多
关键词 广义回归神经网络 高程插值算法 精度评价 回波模拟 深度神经网络 数字高程模型
下载PDF
基于萤火虫算法?广义回归神经网络的光伏发电功率组合预测 被引量:34
8
作者 王昕 黄柯 +4 位作者 郑益慧 李立学 邵凤鹏 贾立凯 徐清山 《电网技术》 EI CSCD 北大核心 2017年第2期455-461,共7页
随着光伏发电大容量地并入电网,其输出的随机性必将对大电网安全稳定运行造成影响,为此建立了一种变权重的光伏短期组合预测模型,首先通过主成分分析法(principal component analysis,PCA)将影响光伏出力的多重线性因素进行压缩、提取... 随着光伏发电大容量地并入电网,其输出的随机性必将对大电网安全稳定运行造成影响,为此建立了一种变权重的光伏短期组合预测模型,首先通过主成分分析法(principal component analysis,PCA)将影响光伏出力的多重线性因素进行压缩、提取以简化模型输入变量的维数,然后将提取的第一主成分结合灰色关联度来筛选相似日样本,接着将样本分别带入最小二乘支持向量机、改进BP网络2种单一模型进行2次预测。第1次预测作为相似日预测,用来训练权重系数,训练方法是萤火虫算法优化的广义回归神经网络;第2次预测是待预测日的预测。仿真结果验证了所提模型的有效性。 展开更多
关键词 主成分分析法 灰色关联度 萤火虫算法 广义回归神经网络
下载PDF
基于广义回归神经网络的时间序列预测研究 被引量:48
9
作者 冯志鹏 宋希庚 +2 位作者 薛冬新 郑爱萍 孙玉明 《振动.测试与诊断》 EI CSCD 2003年第2期105-109,共5页
介绍了广义回归神经网络的基本理论 ,提出了应用 BIC准则确定输入神经元数目的方法 ,将其应用于大型旋转机械振动状态时间序列的单步和多步预测 ,与传统的采用误差反向传播学习算法的三层前馈感知器网络 (BP神经网络 )的预测结果进行对... 介绍了广义回归神经网络的基本理论 ,提出了应用 BIC准则确定输入神经元数目的方法 ,将其应用于大型旋转机械振动状态时间序列的单步和多步预测 ,与传统的采用误差反向传播学习算法的三层前馈感知器网络 (BP神经网络 )的预测结果进行对比。结果表明 ,该网络的预测性能优于后者 ,即使样本数据稀少 。 展开更多
关键词 广义回归神经网络 时间序列预测 平滑参数 网络结构 旋转机械 振动状态
下载PDF
广义回归神经网络在煤灰熔点预测中的应用 被引量:31
10
作者 周昊 郑立刚 +1 位作者 樊建人 岑可法 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2004年第11期1479-1482,共4页
为了提高估算煤灰熔点的精度,采用广义回归神经网络(GRNN)对求解煤灰熔点问题进行了建模.将煤灰组分作为网络输入,煤灰软化温度作为网络输出,采用实验数据训练网络,训练完成的网络作为模型预测煤灰熔点.仿真结果表明,GRNN的预测值与实... 为了提高估算煤灰熔点的精度,采用广义回归神经网络(GRNN)对求解煤灰熔点问题进行了建模.将煤灰组分作为网络输入,煤灰软化温度作为网络输出,采用实验数据训练网络,训练完成的网络作为模型预测煤灰熔点.仿真结果表明,GRNN的预测值与实验值的最大相对误差为2.81%,而反向传播神经网络(BPNN)预测煤灰熔点的相对误差为3.62%.由于GRNN可应用于小样本问题的学习,GRNN比BPNN对煤灰熔点具有更好的预测和泛化能力.GRNN具有设计简单与收敛快的优点,并提高了实时处理与反映最新运行工况参数的预测能力. 展开更多
关键词 灰熔点 灰组分 广义回归神经网络 GRNN
下载PDF
基于粒子群算法和广义回归神经网络的岩爆预测 被引量:102
11
作者 贾义鹏 吕庆 尚岳全 《岩石力学与工程学报》 EI CAS CSCD 北大核心 2013年第2期343-348,共6页
岩爆是岩石深部开挖中一种常见的工程地质灾害。为评价岩爆发生的可能性,提出一种基于粒子群算法和广义回归神经网络模型(PSO-GRNN模型)的岩爆预测方法。该方法利用已有岩爆数据,通过神经网络技术建立回归模型,采用粒子群算法对模型参... 岩爆是岩石深部开挖中一种常见的工程地质灾害。为评价岩爆发生的可能性,提出一种基于粒子群算法和广义回归神经网络模型(PSO-GRNN模型)的岩爆预测方法。该方法利用已有岩爆数据,通过神经网络技术建立回归模型,采用粒子群算法对模型参数进行优化,减少人为因素对神经网络设计的影响。据此方法,在能量理论的基础上,选取洞壁围岩最大切向应力、岩石单轴抗压强度、抗拉强度和弹性能量指数作为主要影响因素,利用国内外26组已有工程数据建立岩爆预测的PSO-GRNN模型。通过对苍岭隧道和冬瓜山铜矿岩爆预测的工程实例分析验证该方法的可行性和适用性。所提方法可为类似工程的岩爆预测提供参考。 展开更多
关键词 岩石力学 岩爆 岩石地下开挖 粒子群算法 广义回归神经网络
下载PDF
应用广义回归神经网络进行土壤空间变异研究 被引量:55
12
作者 沈掌泉 周斌 +1 位作者 孔繁胜 John S.Bailey 《土壤学报》 CAS CSCD 北大核心 2004年第3期471-475,共5页
关键词 广义回归神经网络 土壤性质 空间变异 空间插值技术 地统计学
下载PDF
基于广义回归神经网络的货运量预测 被引量:72
13
作者 赵闯 刘凯 李电生 《铁道学报》 EI CAS CSCD 北大核心 2004年第1期12-15,共4页
根据货运量形成的原因 ,分析了货运量和相关影响因素之间的关系以及货运量预测的特点。在此基础上 ,建立货运量预测的广义回归神经网络 (GeneralRegressionNeuralNetwork ,GRNN)模型 ,并以我国 1981~ 2 0 0 1年的货运量和相关经济指标... 根据货运量形成的原因 ,分析了货运量和相关影响因素之间的关系以及货运量预测的特点。在此基础上 ,建立货运量预测的广义回归神经网络 (GeneralRegressionNeuralNetwork ,GRNN)模型 ,并以我国 1981~ 2 0 0 1年的货运量和相关经济指标的历史统计数据作为学习样本 ,通过拟合训练和外推预测分析 。 展开更多
关键词 货运量 预测 广义回归神经网络
下载PDF
利用温度资料和广义回归神经网络模拟参考作物蒸散量 被引量:15
14
作者 冯禹 崔宁博 +2 位作者 龚道枝 胡笑涛 张宽地 《农业工程学报》 EI CAS CSCD 北大核心 2016年第10期81-89,F0003,共10页
参考作物蒸散量(reference evapotranspiration,ET0)精确模拟对水资源高效利用和灌溉制度制定具有重要意义,该文以四川盆地19个气象站点1961-1990年逐日最高、最低温度和大气顶层辐射作为输入参数,FAO-56 Penman-Monteith(PM)模型计算的... 参考作物蒸散量(reference evapotranspiration,ET0)精确模拟对水资源高效利用和灌溉制度制定具有重要意义,该文以四川盆地19个气象站点1961-1990年逐日最高、最低温度和大气顶层辐射作为输入参数,FAO-56 Penman-Monteith(PM)模型计算的ET0为标准值,建立基于广义回归神经网络(generalized regression neural network,GRNN)的ET0模拟模型,基于1991-2014年资料进行模型验证,将GRNN模型同Hargreaves(HS1)和改进Hargreaves(HS2)等简化模型的模拟结果进行比较,分析只有温度资料情况下不同模型模拟ET0误差的时空变异性。结果表明:GRNN、HS1和HS2模型均方根误差(root mean square error,RMSE)分别为0.41、1.16和0.70 mm/d,模型效率系数(Ens)分别为0.88、0.13和0.67。3种模型RMSE在时空上均呈现HS1>HS2>GRNN、Ens均呈现GRNN>HS2>HS1趋势;与PM模型模拟结果相比,GRNN、HS1和HS2模型模拟结果分别偏大0.8%、45.1%和17.3%。在时空尺度上的误差分析均表明利用温度资料建立的GRNN模型能够较为准确地模拟四川盆地ET0,因此可以作为资料缺失情况下ET0模拟的推荐模型。该研究可为四川盆地作物需水精确预测提供科学依据。 展开更多
关键词 温度 模型 农业 参考作物蒸散量 温度资料 Penman-Monteith模型 广义回归神经网络 模型适用性
下载PDF
基于负荷预测及广义回归神经网络的短路电流超短期预测 被引量:14
15
作者 潘睿 刘俊勇 +2 位作者 倪雅琦 郭晓鸣 韩卫衡 《电力系统保护与控制》 EI CSCD 北大核心 2010年第18期94-99,共6页
针对智能电网中实时状态监测和告警需求,提出一种电网短路电流超短期智能预测的方法。通过节点超短期负荷预测进行电网态势外推,采用基于广义回归神经网络的短路电流辨识方法对短期内的全网母线短路电流水平进行扫描,实现短路电流的超... 针对智能电网中实时状态监测和告警需求,提出一种电网短路电流超短期智能预测的方法。通过节点超短期负荷预测进行电网态势外推,采用基于广义回归神经网络的短路电流辨识方法对短期内的全网母线短路电流水平进行扫描,实现短路电流的超短期智能辨识。该方法为智能电网中超短期智能预测提供了一种快速仿真建模(FSM)的新思路,为智能调度辅助决策提供有力的技术支持。通过IEEE30节点系统验证了该方法的可行性与有效性。 展开更多
关键词 超短期短路电流预测 超短期负荷预测 智能电网 广义回归神经网络 智能调度 快速仿真建模
下载PDF
广义回归神经网络在烤烟内在质量分析中的应用 被引量:27
16
作者 何琴 高建华 刘伟 《安徽农业大学学报》 CAS CSCD 北大核心 2005年第3期406-410,共5页
采用广义回归神经网络分别对烤烟的主要化学成分与香气质、香气量、杂气、刺激、余味、劲头和烟气浓度等感官质量进行建模。结果表明,在训练集样本数据较少时,广义回归神经网络的预测准确度仍然很高。
关键词 广义回归神经网络 化学成分 感官质量 烤烟
下载PDF
基于广义回归神经网络的电离层VTEC建模 被引量:26
17
作者 范国清 王威 郗晓宁 《测绘学报》 EI CSCD 北大核心 2010年第1期16-21,共6页
提出一种基于广义回归神经网络的电离层电子总含量建模的新方法。依据电子总含量的时空变化特性建立基于广义回归神经网络的区域电子总含量模型。结合实例,详细讨论训练样本的采样策略对网络模型性能的影响,并确定较优的模型光滑参数和... 提出一种基于广义回归神经网络的电离层电子总含量建模的新方法。依据电子总含量的时空变化特性建立基于广义回归神经网络的区域电子总含量模型。结合实例,详细讨论训练样本的采样策略对网络模型性能的影响,并确定较优的模型光滑参数和采样策略。分别从理论和实例上与常用的多项式模型进行对比分析。结果表明在数据样本密集区域两者的精度相当,而在外推的空白区域内网络模型的精度优于多项式模型,验证网络模型的可行性和有效性。 展开更多
关键词 电子总含量 广义回归神经网络 采样 模型精度
下载PDF
广义回归神经网络模型在短期电力负荷预测中的应用研究 被引量:32
18
作者 谷志红 牛东晓 王会青 《中国电力》 CSCD 北大核心 2006年第4期11-14,共4页
介绍了广义回归神经网络(GRNN)的基本理论,指出其回归的实质就是对平滑参数的优化。考虑到常规差分进化算法容易“早熟,”全局寻优效率偏低,提出了基于优进策略的差分进化算法,利用种群繁衍的有用信息改进子代分布,并引入确定性寻优操作... 介绍了广义回归神经网络(GRNN)的基本理论,指出其回归的实质就是对平滑参数的优化。考虑到常规差分进化算法容易“早熟,”全局寻优效率偏低,提出了基于优进策略的差分进化算法,利用种群繁衍的有用信息改进子代分布,并引入确定性寻优操作,实现了高效全局搜优。以推广能力作为优化目标,所建的GRNN有很强的非线性拟合能力和优良的预报性能,将其成功地为短期电力负荷预测建模,获得了满意的预测结果。 展开更多
关键词 负荷预测 广义回归神经网络 差分进化算法 优进策略
下载PDF
基于广义回归神经网络的发动机排放预测 被引量:10
19
作者 俞明 林冬燕 +1 位作者 孙国斌 黄榕清 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2003年第1期51-56,共6页
神经网络是当前最主要的智能控制技术之一 ,它模拟人脑的结构及对信息的记忆和处理功能 ,具有擅长从输入输出数据中学习有用的知识的特性 .发动机性能预测是根据发动机结构参数和运转参数来估算推测发动机的各种性能指标 ,因此可以利用... 神经网络是当前最主要的智能控制技术之一 ,它模拟人脑的结构及对信息的记忆和处理功能 ,具有擅长从输入输出数据中学习有用的知识的特性 .发动机性能预测是根据发动机结构参数和运转参数来估算推测发动机的各种性能指标 ,因此可以利用神经网络的学习性的特点 ,借助神经网络将各种影响汽油机燃烧过程的主要参数对汽油机的非线性影响以网络模型的形式表示出来 .文中讨论了如何抛开数学建模的方式 ,选用广义回归神经网络 ,进行发动机排放特性的预测 .应用MATLAB软件工具箱编程 。 展开更多
关键词 广义回归神经网络 发动机 排放预测 预测模型 智能控制 汽油机 排放控制
下载PDF
基于广义回归神经网络与遗传算法的煤灰熔点优化 被引量:9
20
作者 石喜光 郑立刚 +3 位作者 周昊 陈习珍 邱坤赞 岑可法 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2005年第8期1189-1192,1242,共5页
考虑固态和液态排渣锅炉对煤灰熔点的不同要求,采用广义回归神经网络建立了煤灰软化温度模型.神经网络的输入变量为7个,即煤灰中SiO2、Al2O3、Fe2O3、CaO、MgO、TiO2、Na2O&K2O的质量分数.以煤灰软化温度作为目标函数,采用遗传算法... 考虑固态和液态排渣锅炉对煤灰熔点的不同要求,采用广义回归神经网络建立了煤灰软化温度模型.神经网络的输入变量为7个,即煤灰中SiO2、Al2O3、Fe2O3、CaO、MgO、TiO2、Na2O&K2O的质量分数.以煤灰软化温度作为目标函数,采用遗传算法寻优计算获得当煤灰软化温度最高和最低时煤灰中氧化物的组成.广义回归神经网络仅需30个训练样本,最大和平均相对误差分别为21.8%和1.55%.优化结果表明,掺烧高钙煤或者向燃煤中添加石灰石等富含Ca的原料可以降低煤灰熔点;而增加Al2O3的质量分数可以提高煤灰熔点. 展开更多
关键词 灰熔点 灰组分 广义回归神经网络 遗传算法
下载PDF
上一页 1 2 56 下一页 到第
使用帮助 返回顶部