针对准循环低密度奇偶校验(QC-LDPC)码中准循环基矩阵的移位系数确定问题,该文提出基于等差数列(AP)的确定方法。该方法构造的校验矩阵的围长至少为8,移位系数由简单的数学表达式确定,节省了编解码存储空间。研究结果表明,该方法对码长...针对准循环低密度奇偶校验(QC-LDPC)码中准循环基矩阵的移位系数确定问题,该文提出基于等差数列(AP)的确定方法。该方法构造的校验矩阵的围长至少为8,移位系数由简单的数学表达式确定,节省了编解码存储空间。研究结果表明,该方法对码长和码率参数的设计具有较好的灵活性。同时表明在加性高斯白噪声(AWGN)信道和置信传播(BP)译码算法下,该方法构造的码字在码长为1008、误比特率为510-时,信噪比优于渐进边增长(PEG)码近0.3 d B。展开更多
提出一种基于卢卡斯数列构造围长至少为8的规则(j,k)卢卡斯QC-LDPC(L-QC-LDPC)码的方法。该方法构造的码字围长较大,能够有效地消除短环。循环置换子矩阵维数p值的下界允许连续取值,且在硬件实现方面可节省存储空间,进而降低硬件实现成...提出一种基于卢卡斯数列构造围长至少为8的规则(j,k)卢卡斯QC-LDPC(L-QC-LDPC)码的方法。该方法构造的码字围长较大,能够有效地消除短环。循环置换子矩阵维数p值的下界允许连续取值,且在硬件实现方面可节省存储空间,进而降低硬件实现成本以及复杂度。仿真结果表明,在码率为1/2、码长为1 302和误码率为10?6时,L-QC-LDPC码与OCS-LDPC码相比,净编码增益(NCG)提高了约2 d B,比确定性码的NCG提高了约0.8 d B;与二次函数相比,性能略优于二次函数LDPC(QF-LDPC)码,有约0.1 d B NCG的改善。同时,在相同码率、相近码长和误码率为10^(-6)时,L-QC-LDPC码与基于有限域的循环子集构造的QC-LDPC码相比,提高了约0.5 d B的净编码增益。展开更多
文摘针对准循环低密度奇偶校验(QC-LDPC)码中准循环基矩阵的移位系数确定问题,该文提出基于等差数列(AP)的确定方法。该方法构造的校验矩阵的围长至少为8,移位系数由简单的数学表达式确定,节省了编解码存储空间。研究结果表明,该方法对码长和码率参数的设计具有较好的灵活性。同时表明在加性高斯白噪声(AWGN)信道和置信传播(BP)译码算法下,该方法构造的码字在码长为1008、误比特率为510-时,信噪比优于渐进边增长(PEG)码近0.3 d B。
文摘提出一种基于卢卡斯数列构造围长至少为8的规则(j,k)卢卡斯QC-LDPC(L-QC-LDPC)码的方法。该方法构造的码字围长较大,能够有效地消除短环。循环置换子矩阵维数p值的下界允许连续取值,且在硬件实现方面可节省存储空间,进而降低硬件实现成本以及复杂度。仿真结果表明,在码率为1/2、码长为1 302和误码率为10?6时,L-QC-LDPC码与OCS-LDPC码相比,净编码增益(NCG)提高了约2 d B,比确定性码的NCG提高了约0.8 d B;与二次函数相比,性能略优于二次函数LDPC(QF-LDPC)码,有约0.1 d B NCG的改善。同时,在相同码率、相近码长和误码率为10^(-6)时,L-QC-LDPC码与基于有限域的循环子集构造的QC-LDPC码相比,提高了约0.5 d B的净编码增益。