Under near ambient temperature and ultrasonication, nanocrystalline Zn(Oxin)2·2H2O (zinc 8-quinolinolate) was synthesized by solid state chemical reaction. The particle size distribution was relatively uniform, t...Under near ambient temperature and ultrasonication, nanocrystalline Zn(Oxin)2·2H2O (zinc 8-quinolinolate) was synthesized by solid state chemical reaction. The particle size distribution was relatively uniform, the morphology of the mare was ball like particle. The phase, particle size and morphology of the prepared nanocrystalline were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron diffraction (ED). The results show that the crystallite product has an average size of about 30 nm. The effects of a series of reaction conditions on the synthesis of Zn(Oxin)2·2H2O by solid state reaction were studied. During the synthesis of nanocrystalline Zn(Oxin)2·2H2O, the solid state reaction conditions such as changing reactant, matching proportion of reactant, adding inert substance, joining a little solvent or surface active solvent and grinding at different times may influence morphology, particle size and the size distribution of final products.展开更多
Alumina coated LiNi1/3Mn1/3Co1/3O2 particles were obtained by a simple method of solid state reaction at room temperature. The reaction mechanism of solid state reaction at room temperature was investigated. The struc...Alumina coated LiNi1/3Mn1/3Co1/3O2 particles were obtained by a simple method of solid state reaction at room temperature. The reaction mechanism of solid state reaction at room temperature was investigated. The structure and morphology of the coating materials were investigated by XRD, SEM and TEM. The electrochemical performances of uncoated and Al2O3-coated LiNi1/3Co1/3Mn1/3O2 cathode materials were studied within a voltage window of 3.00?4.35 V at current density of 30 mA/g. SEM, TEM and EDS analytical results indicate that the surface of LiNi1/3Mn1/3Co1/3O2 particles is coated with very fine Al2O3 composite, which leads to the improved cycle ability though a slight decrease in the first discharge capacity is observed. It is proposed that surface treatment by solid state reaction at room temperature is a simple and effective method to improve the cycle performance of LiNi1/3Co1/3Mn1/3O2 particles.展开更多
基金Project (29631040) supported by the National Natural Science Foundation of China Project (200604) supported by the Scientific Research Foundation of Neijiang Teachers College, China
文摘Under near ambient temperature and ultrasonication, nanocrystalline Zn(Oxin)2·2H2O (zinc 8-quinolinolate) was synthesized by solid state chemical reaction. The particle size distribution was relatively uniform, the morphology of the mare was ball like particle. The phase, particle size and morphology of the prepared nanocrystalline were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron diffraction (ED). The results show that the crystallite product has an average size of about 30 nm. The effects of a series of reaction conditions on the synthesis of Zn(Oxin)2·2H2O by solid state reaction were studied. During the synthesis of nanocrystalline Zn(Oxin)2·2H2O, the solid state reaction conditions such as changing reactant, matching proportion of reactant, adding inert substance, joining a little solvent or surface active solvent and grinding at different times may influence morphology, particle size and the size distribution of final products.
基金Project(50604018) supported by the National Natural Science Foundation of China
文摘Alumina coated LiNi1/3Mn1/3Co1/3O2 particles were obtained by a simple method of solid state reaction at room temperature. The reaction mechanism of solid state reaction at room temperature was investigated. The structure and morphology of the coating materials were investigated by XRD, SEM and TEM. The electrochemical performances of uncoated and Al2O3-coated LiNi1/3Co1/3Mn1/3O2 cathode materials were studied within a voltage window of 3.00?4.35 V at current density of 30 mA/g. SEM, TEM and EDS analytical results indicate that the surface of LiNi1/3Mn1/3Co1/3O2 particles is coated with very fine Al2O3 composite, which leads to the improved cycle ability though a slight decrease in the first discharge capacity is observed. It is proposed that surface treatment by solid state reaction at room temperature is a simple and effective method to improve the cycle performance of LiNi1/3Co1/3Mn1/3O2 particles.