Solid-state fermentation has certain advantages in improving the yield of lipopetide, Box-Behnken Design(BBD) was adopted to optimize the producing condition of the antibacterial lipopetide produced by Bacillus natt...Solid-state fermentation has certain advantages in improving the yield of lipopetide, Box-Behnken Design(BBD) was adopted to optimize the producing condition of the antibacterial lipopetide produced by Bacillus natto in this article. The optimal solid state fermentation conditions were obtained: 10 g solid medium(7 g of wheat bran, 3 g of soybean meal) with appropriate inorganic salt(glucose 0.67%,sodium glutamate 0.64%,(NH4)2SO40.15%, K2HPO40.10%); moisture content 123.78%; inoculation amount 10%; cultivation temperature 36.75 ℃ and cultivation time 72.4 h. The maximum production of lipopetide is 61.76 mg/gds under such conditions. This is the first report on the optimization of lipopeptide fermentation conditions in solid-state fermentation by wheat bran and soybean meal with Bacillus natto NT-6 strain, and will contribute to the development of lipopetide production.展开更多
[Objective] The aim was to optimize the appropriate solid state fermentation(SSF)conditions.[Method] The optimization of solid state fermentation using a mixture substrate of bean curd residue and the marc with Bacill...[Objective] The aim was to optimize the appropriate solid state fermentation(SSF)conditions.[Method] The optimization of solid state fermentation using a mixture substrate of bean curd residue and the marc with Bacillus natto was developed.[Result] The best fermentation condition optimized by the test of single factor and the orthogonal design respectively was mixing ratio of bean curd residue to marc 2∶1,substrate pH value 6,fermentation temperature 39 ℃,inoculum volume 10% and fermentation time 48 h.Under this optimized fermentation condition,the content of crude fiber in the substrate decreased from 107.8 mg/g before SSF to 56.2 mg/g after SSF,and the degeneration rate of crude fiber was 47.87%.[Conclusion] The bean curd residue in its palatability was enormously improved by SSF with Bacillus natto strain,which could be expected to be widely used as raw material of health foodstuff.展开更多
The work is intended to achieve optimum culture conditions of α-galactosidase production by a mutant strain ,Aspergillusfoetidus ZU-GI in solid-state fermentation (SSF). Certain fermentation parameters involving mo...The work is intended to achieve optimum culture conditions of α-galactosidase production by a mutant strain ,Aspergillusfoetidus ZU-GI in solid-state fermentation (SSF). Certain fermentation parameters involving moisture content, incubation temperature, cultivation period of seed, inoculum volume, initial pH value, layers of pledget, load size of medium and period of cultivation were investigated separately. The optimal cultivating conditions of α-galactosidase production in SSF were 60% initial moisture of medium, 28 ℃ incubation temperature, 18^h cultivation period of seed, 10% inoculum volume, 5.0-6.0 initial pH of medium, 6 layers of pledget and 10 g dry matter loadage. Under the optimized cultivation conditions, the maximum α-galactosidase production was 2037.51 U/g dry matter near the 144th hour of fermentation.展开更多
With the high availability of agricultural wastes in Malaysia, green energy is practical to be conducted. Thus, a research on the modification of the physical conditions of the solid state culture system, specifically...With the high availability of agricultural wastes in Malaysia, green energy is practical to be conducted. Thus, a research on the modification of the physical conditions of the solid state culture system, specifically different initial moisture content, fermentation temperature, inoculums size and different percentage of carbon and nitrogen sources were conducted to compare the usage of two different lignocellulosic materials which were oil palm frond and banana petiole respectively. After using a conventional method (one factor at a time), the optimum fermentation conditions would be a combination of 70% initial moisture content (v/w), at 28 ~C fermentation temperature with supplementation of 1% sucrose (w/w) and 1% peptone using 1 mL of inoculum in order to achieve highest xylanase production which was 1,711.87 U/mL and 1,579.60 U/mL for oil palm frond and banana petiole respectively. It was suggested that oil palm frond showed higher xylanase production compared to banana petiole.展开更多
基金Supported by the Public Research and Capacity Building Program of Guangdong Province(2014B020204005)the Higher Educational Cultivation Program for Major Scientific Research Projects of Guangdong Ocean University(2013050205,2014050203,2013050312)~~
文摘Solid-state fermentation has certain advantages in improving the yield of lipopetide, Box-Behnken Design(BBD) was adopted to optimize the producing condition of the antibacterial lipopetide produced by Bacillus natto in this article. The optimal solid state fermentation conditions were obtained: 10 g solid medium(7 g of wheat bran, 3 g of soybean meal) with appropriate inorganic salt(glucose 0.67%,sodium glutamate 0.64%,(NH4)2SO40.15%, K2HPO40.10%); moisture content 123.78%; inoculation amount 10%; cultivation temperature 36.75 ℃ and cultivation time 72.4 h. The maximum production of lipopetide is 61.76 mg/gds under such conditions. This is the first report on the optimization of lipopeptide fermentation conditions in solid-state fermentation by wheat bran and soybean meal with Bacillus natto NT-6 strain, and will contribute to the development of lipopetide production.
文摘[Objective] The aim was to optimize the appropriate solid state fermentation(SSF)conditions.[Method] The optimization of solid state fermentation using a mixture substrate of bean curd residue and the marc with Bacillus natto was developed.[Result] The best fermentation condition optimized by the test of single factor and the orthogonal design respectively was mixing ratio of bean curd residue to marc 2∶1,substrate pH value 6,fermentation temperature 39 ℃,inoculum volume 10% and fermentation time 48 h.Under this optimized fermentation condition,the content of crude fiber in the substrate decreased from 107.8 mg/g before SSF to 56.2 mg/g after SSF,and the degeneration rate of crude fiber was 47.87%.[Conclusion] The bean curd residue in its palatability was enormously improved by SSF with Bacillus natto strain,which could be expected to be widely used as raw material of health foodstuff.
文摘The work is intended to achieve optimum culture conditions of α-galactosidase production by a mutant strain ,Aspergillusfoetidus ZU-GI in solid-state fermentation (SSF). Certain fermentation parameters involving moisture content, incubation temperature, cultivation period of seed, inoculum volume, initial pH value, layers of pledget, load size of medium and period of cultivation were investigated separately. The optimal cultivating conditions of α-galactosidase production in SSF were 60% initial moisture of medium, 28 ℃ incubation temperature, 18^h cultivation period of seed, 10% inoculum volume, 5.0-6.0 initial pH of medium, 6 layers of pledget and 10 g dry matter loadage. Under the optimized cultivation conditions, the maximum α-galactosidase production was 2037.51 U/g dry matter near the 144th hour of fermentation.
文摘With the high availability of agricultural wastes in Malaysia, green energy is practical to be conducted. Thus, a research on the modification of the physical conditions of the solid state culture system, specifically different initial moisture content, fermentation temperature, inoculums size and different percentage of carbon and nitrogen sources were conducted to compare the usage of two different lignocellulosic materials which were oil palm frond and banana petiole respectively. After using a conventional method (one factor at a time), the optimum fermentation conditions would be a combination of 70% initial moisture content (v/w), at 28 ~C fermentation temperature with supplementation of 1% sucrose (w/w) and 1% peptone using 1 mL of inoculum in order to achieve highest xylanase production which was 1,711.87 U/mL and 1,579.60 U/mL for oil palm frond and banana petiole respectively. It was suggested that oil palm frond showed higher xylanase production compared to banana petiole.