Machined chips of Mg-Zn-Y-Zr alloy were consolidated by cold pressing and then hot extrusion under various processing temperatures and extrusion ratios. The results show that the microstructure of the chip-extruded al...Machined chips of Mg-Zn-Y-Zr alloy were consolidated by cold pressing and then hot extrusion under various processing temperatures and extrusion ratios. The results show that the microstructure of the chip-extruded alloy is marked by a large number of recrystallized grains and some unrecrystallized grains, which results in high strength but low ductility at temperatures below 320 ℃. With increasing processing temperature up to 360 ℃, entirely recrystallized and equiaxed grains are obtained. Mg-Zn-Y-Zr alloy with low strength but high ductility is obtained compared with the alloy processed at low temperature. At 420℃, coarse and equiaxed grains are formed, which results in the drastic decrease of mechanical properties. With increasing extrusion ratio from 8 to 16, the grain refinement is more obvious and the mechanical properties at room temperature are improved effectively. However, the yield strength and ultimate tensile strength are improved a little with further increasing extrusion ratio.展开更多
As a new attempt to recycle minute metal scraps, the possibility of manufacturing design materials by semisolid extrusion processing was shown.A design material with an intended shape, such as a character or petal sha...As a new attempt to recycle minute metal scraps, the possibility of manufacturing design materials by semisolid extrusion processing was shown.A design material with an intended shape, such as a character or petal shape, was manufactured using minute metal scraps.Similarly, a design material with an intended color pattern for each metal, such as red copper in a white aluminum matrix, resembling grainlike wood, was manufactured by mixing two or more types of minute metal scrap.In addition, secondary design materials, which have engraved patterns on the surface of the target metal made by an electric discharge machine using the above primary design material as an electrode, were manufactured.展开更多
基金Project (51005217) supported by the National Natural Science Foundation of ChinaProject (20100480677) supported by China Postdoctoral Science Foundation
文摘Machined chips of Mg-Zn-Y-Zr alloy were consolidated by cold pressing and then hot extrusion under various processing temperatures and extrusion ratios. The results show that the microstructure of the chip-extruded alloy is marked by a large number of recrystallized grains and some unrecrystallized grains, which results in high strength but low ductility at temperatures below 320 ℃. With increasing processing temperature up to 360 ℃, entirely recrystallized and equiaxed grains are obtained. Mg-Zn-Y-Zr alloy with low strength but high ductility is obtained compared with the alloy processed at low temperature. At 420℃, coarse and equiaxed grains are formed, which results in the drastic decrease of mechanical properties. With increasing extrusion ratio from 8 to 16, the grain refinement is more obvious and the mechanical properties at room temperature are improved effectively. However, the yield strength and ultimate tensile strength are improved a little with further increasing extrusion ratio.
文摘As a new attempt to recycle minute metal scraps, the possibility of manufacturing design materials by semisolid extrusion processing was shown.A design material with an intended shape, such as a character or petal shape, was manufactured using minute metal scraps.Similarly, a design material with an intended color pattern for each metal, such as red copper in a white aluminum matrix, resembling grainlike wood, was manufactured by mixing two or more types of minute metal scrap.In addition, secondary design materials, which have engraved patterns on the surface of the target metal made by an electric discharge machine using the above primary design material as an electrode, were manufactured.