期刊文献+
共找到3,099篇文章
< 1 2 155 >
每页显示 20 50 100
煤矿井下非均匀照度图像去噪研究 被引量:1
1
作者 张旭辉 麻兵 +2 位作者 杨文娟 董征 李语阳 《工矿自动化》 CSCD 北大核心 2024年第2期1-8,共8页
煤矿综采工作面空间小、照明环境复杂多变,采煤过程中伴随着大量的粉尘、大雾,导致采集的图像出现曝光、细节特征减弱等问题,难以对井下照明区域光照强度过大的图像进行有效的特征提取。针对上述问题,提出了一种煤矿井下非均匀照度图像... 煤矿综采工作面空间小、照明环境复杂多变,采煤过程中伴随着大量的粉尘、大雾,导致采集的图像出现曝光、细节特征减弱等问题,难以对井下照明区域光照强度过大的图像进行有效的特征提取。针对上述问题,提出了一种煤矿井下非均匀照度图像去噪算法。首先,将视频截取为图像,判断图像是否需要进行光照抑制,将需要进行光照抑制的RGB图像拆分通道,并计算每个通道的光照调节因子,实现图像的整体光照调节;然后,将未进行整体光照抑制的图像和经整体光照抑制的图像进行反射分量提取,即将输入的图像转换为HSV空间图像,使用单尺度Retinex(SSR)算法对V通道图像中的光照分量进行单独处理,将V分量中的入射分量去除,保留反射分量,并对反射分量使用直方图均衡算法实现光照均衡化处理;最后,使用基于引导滤波的暗通道先验算法对经过光照处理后的图像进行去雾处理,并使用伽马校正函数重新调节亮度不均的图像。主观评价结果表明:提出的煤矿井下非均匀照度图像去噪算法有效抑制了因光照导致整体亮度较高的问题,且由于大雾、粉尘等因素导致图像模糊的部分更加清晰,图像的细节特征更加突出。采用信息熵、均值、标准差、空间频率4种评价指标对提出的算法效果进行客观评价,结果表明,提出的算法在信息熵、均值、标准差、空间频率上较多尺度Retinex(MSR)算法分别平均提升了21.87%,-56.06%,153.43%,294.45%,较基于颜色保持的多尺度视网膜增强(MSRCP)算法分别平均提升了1.18%,-39.56%,33.29%,-4.71%,较带色彩恢复的多尺度视网膜增强(MSRCR)算法分别平均提升了38.06%,-55.27%,462.10%,300.96%,说明提出的算法能更有效地增加图像信息量、抑制光照强度、提升边缘信息及图像清晰度。 展开更多
关键词 综采工作面 煤矿井下图像去噪 非均匀光照 高光抑制 亮度均衡 图像去雾 伽马校正
下载PDF
基于改进切尾均值的矿井图像去噪算法
2
作者 熊增举 姚成贵 张德华 《工矿自动化》 CSCD 北大核心 2024年第4期63-68,共6页
现有矿井图像去噪算法对于复杂噪声的去除效果有限,且处理速度不能满足实时监控需求。针对该问题,提出一种基于改进切尾均值的矿井图像去噪算法。首先,采用切尾均值滤波器对图像噪声进行初步滤除,同时引入二次检验机制处理残留的噪声点... 现有矿井图像去噪算法对于复杂噪声的去除效果有限,且处理速度不能满足实时监控需求。针对该问题,提出一种基于改进切尾均值的矿井图像去噪算法。首先,采用切尾均值滤波器对图像噪声进行初步滤除,同时引入二次检验机制处理残留的噪声点,通过引入离散系数提升算法对不同像素的区分能力,增强去噪性能;其次,采用基于极值数量的分类处理及再次检验机制,有效减少残留噪声问题;然后,在小波函数中引入新的控制变量优化软阈值函数和硬阈值函数,构建双阈值函数,结合Radon变换增强对线性特征的处理,增强对矿井图像的检测能力;最后,采用均方误差(MSE)与峰值信噪比(PSNR)进行图像质量评价。实验结果表明:相较于切尾均值算法、硬阈值算法、软阈值算法,基于改进切尾均值的矿井图像去噪算法处理的图像的MSE增长相对缓慢,MSE最小,图像去噪效果最好;引入离散系数后,去噪图像的MSE相较于引入前低300 dB左右,PSNR相较于引入前高20 dB左右,引入离散系数能有效减少噪声点对算法的影响;相较于卡尔曼遗传优化算法、变换域图像去噪算法、交叉分支卷积去噪网络,基于改进切尾均值的矿井图像去噪算法处理的图像MSE分别降低了27,21,13 dB,PSNR分别提升了8,6,3 dB,去噪耗时分别缩短了0.20,0.16,0.14 s。 展开更多
关键词 矿井图像去噪 切尾均值 二次检验机制 小波变换 离散系数 双阈值函数 RADON变换
下载PDF
气象遥感图像去噪预处理方法研究
3
作者 赵丽斌 刘浩 +3 位作者 马国忠 郭潆茹 贺铮 王悦 《气象科技》 2024年第3期309-317,共9页
针对静止轨道遥感卫星上多通道扫描型载荷成像、传输与存储过程中,存在数据质量下降等问题,本文在经典三维块匹配算法(Block Matching 3D,BM3D)基础上,提出一种基于多层级小波分解的并行执行策略。首先,使用小波变换对原始气象遥感图像... 针对静止轨道遥感卫星上多通道扫描型载荷成像、传输与存储过程中,存在数据质量下降等问题,本文在经典三维块匹配算法(Block Matching 3D,BM3D)基础上,提出一种基于多层级小波分解的并行执行策略。首先,使用小波变换对原始气象遥感图像分解,得到4个图像分量;其次,将所得图像分量进一步进行3级分解,并选择其中的10个图像分量;最后,每个分量并行执行BM3D滤波器去噪,并重构10个分量的输出图像。与传统BM3D去噪算法相比,改进BM3D算法的计算量可有效降低20%以上。通过与中值滤波、均值滤波、NL-Bayes、BM3D四种降噪算法进行实验对比,所提算法的峰值信噪比平均增益在0.39~4.45 dB之间,特别是在高斯白噪声和脉冲噪声的混合噪声去噪方面要显著优于选取的四种对比算法。 展开更多
关键词 气象遥感 特征识别 图像去噪 Morlet小波变换 BM3D算法
下载PDF
基于迁移学习的气体泄漏红外图像去噪方法
4
作者 撒昱 张石磊 +4 位作者 谭嵋 张迎虎 杨云鹏 马翔云 李奇峰 《大气与环境光学学报》 CAS CSCD 2024年第5期543-554,共12页
非制冷型红外相机由于其成本低、寿命长、性能稳定等优势在气体泄漏检测领域有着广泛应用,而良好的图像去噪算法可以有效提升其检测灵敏度与准确性。结合深度学习和迁移学习技术,提出了一种基于深度迁移学习的气体泄漏红外图像去噪方法... 非制冷型红外相机由于其成本低、寿命长、性能稳定等优势在气体泄漏检测领域有着广泛应用,而良好的图像去噪算法可以有效提升其检测灵敏度与准确性。结合深度学习和迁移学习技术,提出了一种基于深度迁移学习的气体泄漏红外图像去噪方法。首先使用静止场景数据集对卷积神经网络模型进行训练,然后固定部分模型参数,并通过仿真气体数据集对模型再次训练,最终获得适用于气体泄漏红外图像去噪的模型。实验结果表明,该方法可以对非制冷型红外相机拍摄的气体红外图像进行去噪,去噪后的图像具有明显的气体轮廓信息,同时可以分辨出泄漏源的位置。因此,该方法可以帮助非制冷型红外相机更好地完成气体泄漏检测任务。 展开更多
关键词 图像处理 红外图像去噪 深度迁移学习 卷积神经网络 气体泄漏检测
下载PDF
基于深度图像先验的高光谱图像去噪方法
5
作者 马飞 王梓璇 刘思雨 《激光技术》 CAS CSCD 北大核心 2024年第3期379-386,共8页
为了避免现有的高光谱图像去噪优化模型仅考虑有限的高光谱内在结构特点、并未实现图像特征的精确表征的问题,采用了一种基于空谱深度图像先验与平滑的高光谱图像去噪方法,将紧框架变换与具有高表达与强学习能力的深度学习模型进行结合... 为了避免现有的高光谱图像去噪优化模型仅考虑有限的高光谱内在结构特点、并未实现图像特征的精确表征的问题,采用了一种基于空谱深度图像先验与平滑的高光谱图像去噪方法,将紧框架变换与具有高表达与强学习能力的深度学习模型进行结合,构建基于深度学习的噪声去除模型。首先在低秩矩阵分解的基础上,利用特定的深度图像先验学习潜在的空谱特征;然后分别构建端元与丰度矩阵的紧框架稀疏正则探究空谱局部平滑,并解决深度图像先验的半拟合问题;最后设计高效迭代算法实现模型求解。结果表明,基于空谱深度图像先验的方法在各种复杂的噪声干扰下均表现出较好的视觉恢复性能,峰值信噪比至少有1 dB以上的提升,得到了高质量的恢复图像。该方法为高光谱图像去噪提供了参考。 展开更多
关键词 图像处理 高光谱图像去噪 深度学习 紧框架 低秩矩阵分解
下载PDF
基于轻量化YOLOX-S与多阈值分割的矿山遥感图像去噪算法
6
作者 沈丹萍 赵爽 《金属矿山》 CAS 北大核心 2024年第9期175-180,共6页
矿山遥感图像普遍存在大量的噪点,给后续图像分析和处理带来了很大困难。提出了一种基于轻量化目标检测模型YOLOX-S和多阈值分割的矿山遥感图像去噪算法。首先使用YOLOX-S模型对矿山遥感图像进行目标检测,得到矿山目标的位置信息。然后... 矿山遥感图像普遍存在大量的噪点,给后续图像分析和处理带来了很大困难。提出了一种基于轻量化目标检测模型YOLOX-S和多阈值分割的矿山遥感图像去噪算法。首先使用YOLOX-S模型对矿山遥感图像进行目标检测,得到矿山目标的位置信息。然后针对矿山目标的特点,设计了一种多阈值分割方法消除图像中的噪声点。通过将图像分为若干个子区域,并对每个子区域采用不同的阈值进行二值化处理,最终将各子区域的二值化结果合并得到去噪后的图像。试验结果表明:该算法能够有效地去除矿山遥感图像中的噪声点,并且在保留目标特征的同时,大幅提升了图像质量。此外,由于采用了轻量化模型和多阈值分割算法,使得该算法具有较快的处理速度和较低的计算成本,适用于大规模图像数据的处理任务。 展开更多
关键词 矿山遥感图像 轻量化 YOLOX-S 阈值分割 图像去噪
下载PDF
融合CNN和Transformer的图像去噪网络
7
作者 姜文涛 卜艺凡 《计算机系统应用》 2024年第7期39-51,共13页
目前基于深度学习的图像去噪算法无法综合考虑局部和全局的特征信息,进而影响细节处的图像去噪效果,针对该问题,提出了融合CNN和Transformer的图像去噪网络(hybrid CNN and Transformer image denoising network,HCT-Net).首先,提出CNN... 目前基于深度学习的图像去噪算法无法综合考虑局部和全局的特征信息,进而影响细节处的图像去噪效果,针对该问题,提出了融合CNN和Transformer的图像去噪网络(hybrid CNN and Transformer image denoising network,HCT-Net).首先,提出CNN和Transformer耦合模块(CNN and Transformer coupling block,CTB),构造融合卷积和通道自注意力的双分支结构,缓解单纯依赖Transformer造成的高额计算开销,同时动态分配注意力权重使网络关注重要图像特征.其次,设计自注意力增强卷积模块(self-attention enhanced convolution module,SAConv),采用递进式组合模块和非线性变换,减弱噪声信号干扰,提升在复杂噪声水平下识别局部特征的能力.在6个基准数据集上的实验结果表明,HCT-Net相比当前一些先进的去噪方法具有更好的特征感知能力,能够抑制高频的噪声信号从而恢复图像的边缘和细节信息. 展开更多
关键词 图像去噪 深度学习 TRANSFORMER 卷积神经网络 注意力机制
下载PDF
基于注意力机制的多级小波CNN遥感图像去噪算法
8
作者 成丽波 苑浩然 +1 位作者 李喆 贾小宁 《计算机科学与应用》 2024年第4期73-82,共10页
高质量的卫星遥感图像对计算机视觉任务来说尤为重要,在去噪模型中,感受野大小和效率之间的权衡是去噪任务的一个关键问题。普通卷积网络(CNN)通常以牺牲计算成本为代价来扩大感受野。通道注意力机制可以保证去噪性能的同时尽量减少计... 高质量的卫星遥感图像对计算机视觉任务来说尤为重要,在去噪模型中,感受野大小和效率之间的权衡是去噪任务的一个关键问题。普通卷积网络(CNN)通常以牺牲计算成本为代价来扩大感受野。通道注意力机制可以保证去噪性能的同时尽量减少计算成本,本文中提出了一种新的基于注意力机制的多级小波CNN模型,以更好地平衡感受野大小和计算效率。在改进U-Net结构的基础上,引入小波变换来减小收缩子网络中特征图的大小。此外,通过通道注意力机制进一步优化模型,使对噪声成分的提取更加有针对性。实验采用峰值信噪比(PSNR)和结构相似性(SSIM)两项评价指标对实验结果进行量化评判,在高斯噪声标准差为15,25,30时,较DNCNN,FFDNET等方法在PSNR值上平均提高10%左右,图像细节清晰,能有效地保护遥感图像边缘特征。 展开更多
关键词 深度学习 图像去噪 卫星遥感图像 小波变换 注意力机制
下载PDF
关于图像去噪的综述及优化模型的提出
9
作者 张阿松 《图像与信号处理》 2024年第2期138-150,共13页
在数字图像处理领域中,图像去噪一直是一个基础而关键的课题,尤其是随着遥感技术的发展和应用,对高质量图像的需求日益增长。对于图像去噪的方法却是多种多样的,而缺乏系统地对这些方法进行归类和分析。所以本文详细探讨了现代图像去噪... 在数字图像处理领域中,图像去噪一直是一个基础而关键的课题,尤其是随着遥感技术的发展和应用,对高质量图像的需求日益增长。对于图像去噪的方法却是多种多样的,而缺乏系统地对这些方法进行归类和分析。所以本文详细探讨了现代图像去噪技术的进展,我们将图像去噪方法分为这三大类:全变分、稀疏理论、深度学习。并系统地进行展开论述其中的优缺点,通过列举主要参考文献,并根据参考文献来给我们提供思路,并对这些参考文献仔细深入研究。总结这些参考文献的优点对于我们的启发,并提供建立优化模型的理论基础。最后我们将在本文中的各种方法下提供一些具体的参考优化模型、对于一些高光谱图像数据和条纹噪声的属性进行具体分析,为其它学者提供一些新的建立优化模型的灵感。这些参考文献中的研究成果和我们提供给读者的优化模型有助于推动遥感图像处理技术的发展具有重要意义。 展开更多
关键词 图像去噪 遥感图像去噪 优化模型
下载PDF
基于暗通道先验去雾的SDSS图像去噪研究 被引量:1
10
作者 刘执靖 许婷婷 +5 位作者 邓雨禾 杨明存 李广平 高献军 曹婕 周卫红 《云南民族大学学报(自然科学版)》 CAS 2024年第3期351-358,共8页
美国的斯隆数字巡天(sloan digital sky survey,SDSS)于2000年开始正式的巡天观测,目前已经产生了海量的光谱和图像数据,但受仪器设备本身和观测条件的影响可能会出现观测数据细节模糊或损失等问题.在进行后续数据分析和挖掘之前,对观... 美国的斯隆数字巡天(sloan digital sky survey,SDSS)于2000年开始正式的巡天观测,目前已经产生了海量的光谱和图像数据,但受仪器设备本身和观测条件的影响可能会出现观测数据细节模糊或损失等问题.在进行后续数据分析和挖掘之前,对观测图像进行去噪处理是一个非常必要的步骤.基于此,将暗通道先验(dark channel prior,DCP)去雾算法应用于SDSS测光图像的去噪处理中,并与B2U方法进行对比分析.结果表明:与B2U方法相比,DCP算法去噪效果在峰值信噪比(peak signal-to-noise ratio,PSNR)上提高了7.98 dB,结构相似性(structural similari⁃ty,SSIM)上提高了7%. 展开更多
关键词 图像去噪 SDSS测光图像 暗通道先验 自监督算法
下载PDF
高光谱图像去噪的稀疏空谱Transformer模型 被引量:1
11
作者 杨智翔 孙玉宝 +1 位作者 白志远 栾鸿康 《电子测量技术》 北大核心 2024年第1期150-158,共9页
现阶段Transformer模型的应用提升了高光谱图像去噪的性能,但原始Transformer模型对图像空间-光谱耦合关联性的利用仍存在不足;对空间特征的处理存在过于平滑,容易丢失小尺度结构的现象;同时在光谱维度上也过于关注全部通道特征,缺乏对... 现阶段Transformer模型的应用提升了高光谱图像去噪的性能,但原始Transformer模型对图像空间-光谱耦合关联性的利用仍存在不足;对空间特征的处理存在过于平滑,容易丢失小尺度结构的现象;同时在光谱维度上也过于关注全部通道特征,缺乏对不同光谱波段间差异性的利用;为了应对这些问题,本文提出了一种新的稀疏空谱Transformer模型,提升了对空谱耦合关联性的利用。在空间维度,引入局部增强模块增强空间特征细节,应对过平滑问题;同时在光谱维度上提出了Top-k稀疏自注意力机制,自适应选择前K个最相关的光谱通道特征进行特征交互,从而能够有效捕获空谱特征。最终通过稀疏空谱Transformer的层级残差连接实现高光谱图像的去噪。在ICVL数据集上分别对高斯噪声和复杂噪声进行去噪处理,峰值信噪比分别达到40.56 dB和40.19 dB,证明了本文提出的稀疏空谱Transformer模型优越的性能。 展开更多
关键词 高光谱图像去噪 空间-光谱联合特征 稀疏Transformer
下载PDF
基于局部和全局特征解耦的图像去噪网络
12
作者 丁宇伟 石洪波 +1 位作者 李杰 梁敏 《计算机应用》 CSCD 北大核心 2024年第8期2571-2579,共9页
针对当前基于Transformer的图像去噪算法侧重于捕获图像的全局特征,而忽视局部特征对于恢复图像细节关键作用的问题,提出一种基于局部和全局特征解耦的图像去噪网络。该网络包含2个基于混合Transformer模块(HTB)的多尺度分支和1个基于... 针对当前基于Transformer的图像去噪算法侧重于捕获图像的全局特征,而忽视局部特征对于恢复图像细节关键作用的问题,提出一种基于局部和全局特征解耦的图像去噪网络。该网络包含2个基于混合Transformer模块(HTB)的多尺度分支和1个基于卷积神经网络(CNN)的单尺度分支,旨在将HTB强大的全局建模能力与CNN的局部建模优势有机结合,生成上下文信息丰富且空间细节准确的输出。HTB采用自注意力机制自适应地对空间和通道维度的依赖关系建模,以激活范围更广的输入像素进行重建。鉴于不同分支间可能存在的信息冲突,设计特征传递模块,通过跨分支传递全局特征并抑制低频信息,从而确保各分支间的协同作用。实验结果表明,在真实世界图像数据集SIDD上,与基于Transformer的去噪网络Uformer相比,所提网络的峰值信噪比(PSNR)提高了0.09 dB,结构相似度(SSIM)提高了0.001;在合成图像数据集Urban100上,与多阶段去噪网络MSPNet(Multi-Stage Progressive denoising Network)相比,所提网络的平均PSNR提高了0.41 dB。可见,所提网络能有效去除图像噪声,并重建出更精细的纹理细节。 展开更多
关键词 TRANSFORMER 图像去噪 全局特征 局部特征 特征解耦
下载PDF
级联离散小波多频带分解注意力图像去噪方法
13
作者 王力 李小霞 +2 位作者 秦佳敏 朱贺 周颖玥 《计算机应用研究》 CSCD 北大核心 2024年第1期288-295,共8页
针对图像去噪网络中下采样导致高频信息损失和细节保留能力差的问题,设计了一种级联离散小波多频带分解注意力图像去噪网络。其中多尺度级联离散小波变换结构将原始图像分解为多个尺度下的高低频子带来代替传统下采样,能减少高频信息损... 针对图像去噪网络中下采样导致高频信息损失和细节保留能力差的问题,设计了一种级联离散小波多频带分解注意力图像去噪网络。其中多尺度级联离散小波变换结构将原始图像分解为多个尺度下的高低频子带来代替传统下采样,能减少高频信息损失。多频带特征增强模块使用不同尺度的卷积核并行处理高低频特征,在子网络每一级下重复使用两次,可增强全局和局部的关键特征信息。多频带分解注意力模块通过注意力评估纹理细节成分的重要性并加权不同频带的细节特征,有助于多频带特征增强模块更好地区分噪声和边缘细节。多频带选择特征融合模块融合多尺度多频带特征增强选择性特征,提高模型对于不同尺度噪声的去除能力。在SIDD和DND数据集上,所提方法的PSNR/SSIM指标分别达到了39.35 dB/0.918、39.72 dB/0.955。实验结果表明,该方法的性能优于主流去噪方法,同时具有更清晰的纹理细节和边缘等视觉效果。 展开更多
关键词 图像去噪 高频信息 级联离散小波变换 多频带特征增强 多频带分解注意力
下载PDF
用于低剂量CT图像去噪的多级双树复小波网络
14
作者 张鲁 田春伟 +1 位作者 宋焕生 刘侍刚 《计算机工程》 CAS CSCD 北大核心 2024年第9期266-275,共10页
基于卷积神经网络(CNN)的图像去噪方法能有效去除低剂量计算机断层扫描(CT)图像伴随的伪影和噪声,从而确保CT设备输出高质量图像同时降低辐射,这对患者健康和医学诊断具有重要意义。为了进一步提高低剂量CT图像的质量,提出一种小波域去... 基于卷积神经网络(CNN)的图像去噪方法能有效去除低剂量计算机断层扫描(CT)图像伴随的伪影和噪声,从而确保CT设备输出高质量图像同时降低辐射,这对患者健康和医学诊断具有重要意义。为了进一步提高低剂量CT图像的质量,提出一种小波域去噪网络MDTNet。首先,基于双树复小波变换(DTCWT)构造多级编解码去噪网络,在多个尺度上提取特征以保留更多高频细节;然后,利用扩展的像素重排技术替代卷积上下采样,实现多级输入和特征融合,从而降低计算复杂度;最后,通过大量训练找到最佳的去噪模型,即二级MDTNet配合LeGall滤波器和Qshift_b滤波器,并选择较大尺寸的CT图像作为训练数据。使用AAPM数据集评估MDTNet的性能,实验结果表明,MDTNet能有效去除条纹状伪影和噪声,在定量和定性评估中性能均优于同类型去噪方法。与FWDNet相比,对于1 mm的切片,MDTNet的平均峰值信噪比(PSNR)和结构相似性指数(SSIM)分别提高了0.0887 dB和0.0024;对于3 mm的切片,分别提升了0.1443 dB和0.003。对于单张512×512像素的低剂量CT图像去噪,MDTNet在GPU上仅需0.193 s。MDTNet在保持高效率的同时保留了更多的高频细节,能够为低剂量CT图像去噪提供一种新的框架。 展开更多
关键词 低剂量CT图像 图像去噪 卷积神经网络 双树复小波变换 像素重排
下载PDF
基于残差密集卷积自编码的高噪声图像去噪方法
15
作者 张杰 卢淼鑫 +3 位作者 李嘉康 徐大勇 黄雯潇 史小平 《计算机科学》 CSCD 北大核心 2024年第S01期555-561,共7页
在高噪声图像去噪中,传统卷积自编码器难以挖掘有效的深度特征信息,进而影响了图像的重建质量。为了提高高噪声图像的重建质量,提出了一种残差密集卷积自编码器网络模型。该模型首先使用卷积操作代替池化操作以提高高噪声图像的表征能力... 在高噪声图像去噪中,传统卷积自编码器难以挖掘有效的深度特征信息,进而影响了图像的重建质量。为了提高高噪声图像的重建质量,提出了一种残差密集卷积自编码器网络模型。该模型首先使用卷积操作代替池化操作以提高高噪声图像的表征能力;同时,在编码和解码阶段设计三级密集残差网络结构,实现图像特征的有效挖掘;最后,设计一个优化损失函数以进一步提高重建图像的质量。实验结果表明,设计的去噪方法能够从高噪声图像中重建高质量的图像,同时能够保留更多的细节特征信息,有效验证了该算法在图像去噪中的有效性。该方法能够有效解决高噪声图像的去噪问题,具有重要的应用价值。 展开更多
关键词 图像去噪 卷积自编码器 残差密集卷积 高噪声图像 优化损失函数
下载PDF
基于多级残差信息蒸馏的真实图像去噪方法
16
作者 冯妍舟 刘建霞 +2 位作者 王海翼 冯国昊 白宇 《计算机工程》 CAS CSCD 北大核心 2024年第3期216-223,共8页
深度神经网络对真实图像有较强的去噪能力,可以学习含噪图像和干净图像之间复杂的非线性映射关系。然而,过多的卷积操作导致计算成本增加并占据大量内存,限制了去噪技术在低运算能力设备中的应用,现有去噪算法容易损坏细节信息,恢复图... 深度神经网络对真实图像有较强的去噪能力,可以学习含噪图像和干净图像之间复杂的非线性映射关系。然而,过多的卷积操作导致计算成本增加并占据大量内存,限制了去噪技术在低运算能力设备中的应用,现有去噪算法容易损坏细节信息,恢复图像存在边缘过度平滑、纹理缺失、含有残留噪声等问题。针对这些问题,构造一种多级残差信息蒸馏模块。通过对特征通道进行分割,保留部分特征用于后续多级融合,并进一步通过深度提取单元提取细化后的特征信息;引入对比度感知通道注意力机制对不同通道的特征分配权重;使用多级跳跃连接充分融合不同阶段提取到的上下文信息。构建1个轻量级的多级残差信息蒸馏网络,采用块间复杂度低的编码-解码结构,编码部分为含噪图像特征提取模块,解码部分为干净图像恢复模块。为了加快训练速度,采用混合图像尺寸的渐进式训练方法。实验结果表明,该方法在SSID和DND真实图像数据集上的峰值信噪比分别为39.43 dB和39.49 dB,与其他网络相比提升了0.17~15.77 dB和0.02~7.06 dB,而模型参数量仅为6.92×106,所提模型在提高去噪性能的同时具有较少的参数量。 展开更多
关键词 图像复原 真实图像去噪 多级残差信息蒸馏模块 深度提取模块 对比度感知通道注意力
下载PDF
张量分解和自适应图全变分的高光谱图像去噪
17
作者 蔡明娇 蒋俊正 +1 位作者 蔡万源 周芳 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2024年第2期157-169,共13页
高光谱图像在采集过程中受到观测条件、成像仪材料属性、传输条件等客观因素的影响,不可避免地会引入各种噪声。这严重降低了高光谱图像的质量以及限制了后续处理的精度。因此,高光谱图像去噪是一个极其重要的预处理步骤。针对高光谱图... 高光谱图像在采集过程中受到观测条件、成像仪材料属性、传输条件等客观因素的影响,不可避免地会引入各种噪声。这严重降低了高光谱图像的质量以及限制了后续处理的精度。因此,高光谱图像去噪是一个极其重要的预处理步骤。针对高光谱图像去噪问题,提出了低秩张量分解和自适应图全变分的高光谱图像去噪算法。首先,利用低秩张量分解来描述高光谱图像的全局空间和光谱相关性,并使用自适应权重图全变分来刻画高光谱图像空间维度上的分段平滑特性和保留高光谱图像的边缘信息;此外,采用l1-范数、Frobenius-范数分别刻画包括条纹噪声、脉冲噪声、死线噪声在内的稀疏噪声和高斯噪声。由此高光谱图像去噪问题归结为一个包含低秩张量分解和自适应图全变分的约束优化问题。利用增广拉格朗日乘子法对该优化问题进行交替求解。实验结果表明,所提出的高光谱图像去噪算法与现有的算法相比,能够充分刻画高光谱图像数据的内在结构特性,具有更好的去噪性能。 展开更多
关键词 高光谱图像去噪 Tucker分解 自适应图全变分
下载PDF
基于生成对抗残差学习的矿山远程监控图像去噪算法
18
作者 樊培利 王建军 艾薇 《金属矿山》 CAS 北大核心 2024年第5期286-292,共7页
在矿山远程监控系统中,由于监控摄像头位置和环境等因素限制,往往会导致图像中存在各种噪声,如椒盐噪声、高斯噪声等,这些噪声会对图像质量产生严重影响,同时也会给后续的图像分析和处理带来很大困难。因此,如何准确地去除噪声,提高图... 在矿山远程监控系统中,由于监控摄像头位置和环境等因素限制,往往会导致图像中存在各种噪声,如椒盐噪声、高斯噪声等,这些噪声会对图像质量产生严重影响,同时也会给后续的图像分析和处理带来很大困难。因此,如何准确地去除噪声,提高图像质量,一直是矿山远程监控系统中的重要问题。生成对抗学习是一种基于对抗生成网络(Generative Adversarial Networks,GAN)的图像处理技术,可以有效去除图像中的噪声。据此,提出了一种基于生成对抗残差学习的矿山远程监控图像去噪算法。该算法首先通过GAN生成器学习得到一组残差图像,然后通过残差学习方式将原始图像与残差图像相加得到去噪后的图像。同时,为提高算法的鲁棒性和适用性,还引入了噪声分布估计网络和自适应控制机制。试验结果表明:该算法可以有效去除矿山远程监控图像中的噪声,并且具有较好的鲁棒性和适用性。 展开更多
关键词 矿山远程监控图像 生成对抗网络 残差学习 图像去噪
下载PDF
基于改进小波变换与卷积神经网络的干式空心电抗器红外图像去噪方法
19
作者 殷军 殷学功 +4 位作者 闫立东 崔岩 张尧 王小朋 李宇航 《电气自动化》 2024年第4期90-92,95,共4页
针对传统小波变换法去除干式空心电抗器红外图像中夹带的噪声效果不理想的问题,提出了基于改进小波变换与卷积神经网络的干式空心电抗器红外图像去噪方法。首先利用卷积神经网络中的残差学习对图像中混合特征信息进行提取;然后通过改进... 针对传统小波变换法去除干式空心电抗器红外图像中夹带的噪声效果不理想的问题,提出了基于改进小波变换与卷积神经网络的干式空心电抗器红外图像去噪方法。首先利用卷积神经网络中的残差学习对图像中混合特征信息进行提取;然后通过改进小波变换对图像进行小波分解,并将分解后的分量输入至网络中进行训练;进而通过残差学习增强图像纹理细节信息,解决了传统图像去噪方法的不足;最后进行仿真比较。结果表明,所提方法可以降低网络计算难度,加快训练速度,同时具有良好的去噪性能,优于传统图像去噪方法。 展开更多
关键词 干式空心电抗器 红外图像去噪 改进小波变换 阈值函数 卷积神经网络
下载PDF
特征细化和多尺度注意力的Transformer图像去噪网络 被引量:1
20
作者 袁姮 耿仪坤 《计算机科学与探索》 CSCD 北大核心 2024年第7期1838-1851,共14页
为增强全局上下文信息的关联性,加强对多尺度特征的关注,在提升图像去噪效果的同时最大程度保留细节特征,提出一种基于Transformer的特征细化和多尺度注意力的图像去噪网络(TFRADNet)。该网络不仅在编解码器部分利用Transformer解决大... 为增强全局上下文信息的关联性,加强对多尺度特征的关注,在提升图像去噪效果的同时最大程度保留细节特征,提出一种基于Transformer的特征细化和多尺度注意力的图像去噪网络(TFRADNet)。该网络不仅在编解码器部分利用Transformer解决大规模图像的长程依赖问题,提高模型的去噪效率,还在上采样操作后加入位置感知层来增强网络对特征图中像素位置的感知能力。为了应对Transformer可能对像素间空间关系的忽略,导致局部细节失真,在特征重建阶段设计了特征细化模块(FRB),采用串行结构逐层引入非线性变换,加强对噪声水平复杂的图像局部特征的识别。同时,设计了多尺度注意力模块(MAB),采用并行双分支结构,对空间注意力和通道注意力联合建模,有效捕捉不同尺度的图像特征并进行加权,提高模型对多尺度特征的感知能力。在真实噪声数据集SIDD、DND和RNI15上的实验结果显示,TFRADNet能够兼顾全局信息和局部细节,相比其他先进方法展现出了更强的抑噪能力和稳健性。 展开更多
关键词 图像去噪 特征细化 多尺度注意力 TRANSFORMER 真实噪声
下载PDF
上一页 1 2 155 下一页 到第
使用帮助 返回顶部