针对目前恶意软件检测分类方法在特征提取、检测准确率等方面面临的挑战,提出一种基于API分组重构与图像表示的恶意软件检测分类方法。首先,对恶意软件调用的API类别统一编号,将API指令序列中相同编号的API聚合为同一API组,根据恶意软...针对目前恶意软件检测分类方法在特征提取、检测准确率等方面面临的挑战,提出一种基于API分组重构与图像表示的恶意软件检测分类方法。首先,对恶意软件调用的API类别统一编号,将API指令序列中相同编号的API聚合为同一API组,根据恶意软件运行时各类API的首次调用顺序对API组重排序,将各API组的条目数记录为该类API对软件样本的贡献度。经分组重构后,各API组按序组织,其顺序为软件样本调用各类API的顺序。各API组内部有序,其内部各API的排列顺序即为软件样本对单个API的调用顺序。有序化的API分组有助于API指令序列信息的图像化表达。基于重组的API指令序列提取API编号作为全局特征列表、API贡献度作为局部特征列表、API顺序索引作为时序特征列表,对特征列表进行标准化与零填充,转化为统一尺寸的特征数组。其中,API编号能清晰地标识API类别,API贡献度可以表征该API的调用频繁程度,API顺序索引可区分各API被调用的顺序。然后,分别用3类特征数组填充RGB图像的3个通道,生成3通道的API编号贡献度及顺序索引特征图像(Feature image of API code devotion and sequential index,FimgCDS)。最后,将Fimg CDS特征图像输入自主构建的轻量型恶意软件特征图像卷积神经网络(malware feature image convolutional neural network,MficNN)分类器,实现对恶意软件的检测与分类。实验结果表明,本文方法在两类数据集上的检测分类准确率分别为98.66%和98.35%,具有较高的恶意软件检测分类性能指标和检测分类速度。展开更多
既能减少数据量又能直接快速地进行运算是图像表示方法所追求的目标。本文为克服传统的图像层次结构限制条件过多的缺陷,在借鉴Packing问题的思想的基础上,提出了非对称逆布局模式表示模型(Non-Symmetry and Anti-Packing Pattern Repre...既能减少数据量又能直接快速地进行运算是图像表示方法所追求的目标。本文为克服传统的图像层次结构限制条件过多的缺陷,在借鉴Packing问题的思想的基础上,提出了非对称逆布局模式表示模型(Non-Symmetry and Anti-Packing Pattern Representation Model,NAM)。NAM模型的非对称层次结构使其在表示一幅图像时没有过多的限制条件,因此可以获得更高的压缩比,而且它可以直接进行某些图像处理运算,其基于像素块的运算方式使它的运算效率更高,矩形NAM图像表示和基于它的连通区域标记算法证明了这一点。展开更多
文摘针对目前恶意软件检测分类方法在特征提取、检测准确率等方面面临的挑战,提出一种基于API分组重构与图像表示的恶意软件检测分类方法。首先,对恶意软件调用的API类别统一编号,将API指令序列中相同编号的API聚合为同一API组,根据恶意软件运行时各类API的首次调用顺序对API组重排序,将各API组的条目数记录为该类API对软件样本的贡献度。经分组重构后,各API组按序组织,其顺序为软件样本调用各类API的顺序。各API组内部有序,其内部各API的排列顺序即为软件样本对单个API的调用顺序。有序化的API分组有助于API指令序列信息的图像化表达。基于重组的API指令序列提取API编号作为全局特征列表、API贡献度作为局部特征列表、API顺序索引作为时序特征列表,对特征列表进行标准化与零填充,转化为统一尺寸的特征数组。其中,API编号能清晰地标识API类别,API贡献度可以表征该API的调用频繁程度,API顺序索引可区分各API被调用的顺序。然后,分别用3类特征数组填充RGB图像的3个通道,生成3通道的API编号贡献度及顺序索引特征图像(Feature image of API code devotion and sequential index,FimgCDS)。最后,将Fimg CDS特征图像输入自主构建的轻量型恶意软件特征图像卷积神经网络(malware feature image convolutional neural network,MficNN)分类器,实现对恶意软件的检测与分类。实验结果表明,本文方法在两类数据集上的检测分类准确率分别为98.66%和98.35%,具有较高的恶意软件检测分类性能指标和检测分类速度。