期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
一种基于双尺度高斯核方向导数的图像轮廓检测算法
1
作者 王晓峰 张泽均 丁红胜 《计算机与数字工程》 2015年第10期1861-1864,共4页
为了降低图像轮廓检测中纹理对检测结果的影响,提出一种基于双尺度高斯核方向导数滤波器的图像轮廓检测算法。结合大小两个尺度高斯核方向导数滤波器构造图像的边缘强度映射(ESM),小尺度高斯核方向导数滤波器增强了图像细节信息的检测能... 为了降低图像轮廓检测中纹理对检测结果的影响,提出一种基于双尺度高斯核方向导数滤波器的图像轮廓检测算法。结合大小两个尺度高斯核方向导数滤波器构造图像的边缘强度映射(ESM),小尺度高斯核方向导数滤波器增强了图像细节信息的检测能力,而大尺度高斯核方向导数滤波器起到抑制纹理的作用。利用ESM自身的全局和局部信息对ESM进行均衡化。通过阈值化和形态学处理,得到最终轮廓检测结果。实验表明,该方法有效可行。 展开更多
关键词 图像轮廓检测 高斯核方向导数滤波器 边缘强度映射(ESM) 纹理抑制
下载PDF
基于图像轮廓的泵体口环位姿及尺寸检测算法 被引量:4
2
作者 于福才 豆祥忠 +2 位作者 徐昌军 曹雏清 高云峰 《制造业自动化》 北大核心 2023年第2期1-5,共5页
针对泵体口环人工检测安装精度差的问题,提出了基于图像轮廓的泵体口环位姿及尺寸的视觉检测算法。首先对泵体口环图像进行图像预处理,然后进行图像轮廓检测,分割出泵体口环目标轮廓,最后建立了求取泵体口环位姿及尺寸的数学模型,并根... 针对泵体口环人工检测安装精度差的问题,提出了基于图像轮廓的泵体口环位姿及尺寸的视觉检测算法。首先对泵体口环图像进行图像预处理,然后进行图像轮廓检测,分割出泵体口环目标轮廓,最后建立了求取泵体口环位姿及尺寸的数学模型,并根据目标轮廓中包含的像素点数学信息,设计了泵体口环位姿及尺寸检测算法。实验结果表明,基于该算法能够较精准的识别检测泵体口环位姿及尺寸,在较高精度工业机器视觉化应用中具有现实意义。 展开更多
关键词 泵体口环 视觉检测 图像预处理 图像轮廓检测 位姿及尺寸
下载PDF
图像级激光雷达在收费站入口超限检测的应用
3
作者 王道亮 《中国交通信息化》 2024年第8期113-116,共4页
自高速公路取消省界收费站后,货车收费由计重收费转变为入口治超与按型收费的模式。入口治超成了货车进入高速公路行驶的一道关卡,系统的应用有效防止了超载、超限车辆进入高速公路。基于此背景,本文重点阐述图像级激光雷达在收费站入... 自高速公路取消省界收费站后,货车收费由计重收费转变为入口治超与按型收费的模式。入口治超成了货车进入高速公路行驶的一道关卡,系统的应用有效防止了超载、超限车辆进入高速公路。基于此背景,本文重点阐述图像级激光雷达在收费站入口超限检测系统中的应用。系统部署时,将图像级激光雷达轮廊检测系统安装在高速公路收费站入口广场或匝道处,对即将进入高速公路收费站的车辆在自由流状态下进行尺寸检测,确保“超限”车辆在进入收费站之前进行劝返。旨在提升超限运输的防控能力,保障交通安全和公路基础设施的完好性。 展开更多
关键词 按型收费 收费站 入口超限检测 图像级激光雷达轮廓检测
下载PDF
基于机器视觉的停车线的识别 被引量:1
4
作者 陈勇 范平清 《智能计算机与应用》 2020年第12期137-140,共4页
针对HOG特征提取算法只适用于局部特征,RANSAC等算法工作量大且鲁棒性差和像素图片特征提取效果不好等问题,本文提出了一种转换色彩空间的方法进行识别检测。首先,将RGB图像转换到HSV空间之中,根据需要提取车道线颜色进行阈值化分割图像... 针对HOG特征提取算法只适用于局部特征,RANSAC等算法工作量大且鲁棒性差和像素图片特征提取效果不好等问题,本文提出了一种转换色彩空间的方法进行识别检测。首先,将RGB图像转换到HSV空间之中,根据需要提取车道线颜色进行阈值化分割图像;其次,利用开运算闭运算降噪,解决由不同的环境引起的噪点问题;最后,将降噪处理的图像轮廓检测求外接多边形。仿真实验结果表明:此方法可以清晰准确地检测出停车线,能够为智能驾驶提供技术支撑。 展开更多
关键词 HSV空间 降噪 特征提取 图像轮廓检测
下载PDF
Image edge detection based on nonsubsampled contourlet transform and mathematical morphology 被引量:1
5
作者 何坤贤 王庆 +1 位作者 肖彦昌 王晓兵 《Journal of Southeast University(English Edition)》 EI CAS 2012年第4期445-450,共6页
A novel algorithm for image edge detection is presented. This algorithm combines the nonsubsampled contourlet transform and the mathematical morphology. First, the source image is decomposed by the nonsubsampled conto... A novel algorithm for image edge detection is presented. This algorithm combines the nonsubsampled contourlet transform and the mathematical morphology. First, the source image is decomposed by the nonsubsampled contourlet transform into multi-scale and multi-directional subbands. Then the edges in the high-frequency and low-frequency sub-bands are respectively extracted by the dualthreshold modulus maxima method and the mathematical morphology operator. Finally, the edges from the high- frequency and low-frequency sub-bands are integrated to the edges of the source image, which are refined, and isolated points are excluded to achieve the edges of the source image. The simulation results show that the proposed algorithm can effectively suppress noise, eliminate pseudo-edges and overcome the adverse effects caused by uneven illumination to a certain extent. Compared with the traditional methods such as LoG, Sobel, and Carmy operators and the modulus maxima algorithm, the proposed method can maintain sufficient positioning accuracy and edge details, and it can also make an improvement in the completeness, smoothness and clearness of the outline. 展开更多
关键词 image edge detection nonsubsampled contourlet transform NSCT modulus maxima DUAL-THRESHOLD mathematical morphology structural elements
下载PDF
ConGrap -Contour Detection Based on Gradient Map of Images
6
作者 Frank Nagl Konrad Kolzer +2 位作者 Paul Grimm Tobias Bindel Stephan Rothe 《Computer Technology and Application》 2011年第8期628-637,共10页
In this paper, the authors present ConGrap, a novel contour detector for finding closed contours with semantic connections. Based on gradient-based edge detection, a Gradient Map is generated to store the orientation ... In this paper, the authors present ConGrap, a novel contour detector for finding closed contours with semantic connections. Based on gradient-based edge detection, a Gradient Map is generated to store the orientation of every edge pixel. Using the edge image and the generated Gradient Map, ConGrap separates the image into semantic parts and objects. Each edge pixel is mapped to a contour by a three-stage hierarchical analysis of neighbored pixels and ensures the closing of contours. A final post-process of ConGrap extracts the contour borderlines and merges them, if they semantically relate to each other. In contrast to common edge and contour detections, ConGrap not only produces an edge image, but also provides additional information (e.g., the borderline pixel coordinates the bounding box, etc.) for every contour. Additionally, the resulting contour image provides closed contours without discontinuities and merged regions with semantic connections. Consequently, the ConGrap contour image can be seen as an enhanced edge image as well as a kind of segmentation and object recognition. 展开更多
关键词 Pattern recognition contour detection edge detection SEGMENTATION gradient map.
下载PDF
New Contour Detection Model Working on Gray-Scale Image of Blended Yarn Cross-Section
7
作者 杨宝娣 陶晨 顾平 《Journal of Donghua University(English Edition)》 EI CAS 2009年第6期611-615,共5页
The traditional Contour Tracing algorithm works on the binary image. It is developed that a new model called Facula Diffusion which can work directly on gray-scaled images according to the principle of human vision. T... The traditional Contour Tracing algorithm works on the binary image. It is developed that a new model called Facula Diffusion which can work directly on gray-scaled images according to the principle of human vision. The diffusion operation is controlled by four factors including approximation, closing, length-limiting, and hit-rate. Based on this model, three shape indices, i. e., dimension index, abnormity index, and fluctuation index, were put forward to describe the shape of objects. The rule of shape indices selection was discussed subsequently. Finally, the fibers in polyester/cotton blended yam are classified and the blending ratio is determined. 展开更多
关键词 blended yarn blending ratio image analysis contour tracing facula diffusion feature index
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部