期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
基于元图同构网络的分子毒性预测
1
作者 黄云川 江永全 +1 位作者 黄骏涛 杨燕 《计算机应用》 CSCD 北大核心 2024年第9期2964-2969,共6页
为了获得更准确的分子毒性预测结果,提出基于元图同构网络的分子毒性预测模型Meta-MTP。首先,使用图同构神经网络将原子作为节点、键作为边、分子作为图结构,以获取分子表征;使用预训练模型对图同构网络(GIN)初始化,使它获得更好的参数... 为了获得更准确的分子毒性预测结果,提出基于元图同构网络的分子毒性预测模型Meta-MTP。首先,使用图同构神经网络将原子作为节点、键作为边、分子作为图结构,以获取分子表征;使用预训练模型对图同构网络(GIN)初始化,使它获得更好的参数;引入基于分层注意力和局部增强的前馈Transformer;使用原子类型预测和键预测作为辅助任务提取更多的分子内部信息;通过元学习双层优化策略对模型进行训练;最后使用Tox21和SIDER数据集对模型进行训练。实验结果表明,在Tox21和SIDER数据集上,Meta-MTP具有良好的分子毒性预测能力,当样本数为10时,相较于FSGNNTR(Few-Shot Graph Neural Network-TRansformer)模型,Meta-MTP的曲线下面积(AUC)分别提高了1.4%和5.4%,相较于图同构网络(GIN)、图卷积网络(GCN)和GraphSAGE(Graph Sample and AGgrEgate)3种传统的图神经网络模型,Meta-MTP的AUC提高了18.3%~23.7%和7.3%~22.2%。 展开更多
关键词 深度学习 分子毒性预测 元学习 图同构网络 TRANSFORMER
下载PDF
基于图同构网络的高效Web模糊测试技术研究
2
作者 张展鹏 王鹃 +2 位作者 张冲 王杰 胡宇义 《信息网络安全》 CSCD 北大核心 2024年第10期1544-1552,共9页
现有的Web模糊测试方法主要包括基于字典的黑盒测试方法和借鉴二进制模糊测试的灰盒测试方法,这些方法存在随机性大、效率低的缺点。针对上述问题,文章提出了一种基于图同构网络的高效Web模糊测试方法。首先,利用图同构网络在图表示和... 现有的Web模糊测试方法主要包括基于字典的黑盒测试方法和借鉴二进制模糊测试的灰盒测试方法,这些方法存在随机性大、效率低的缺点。针对上述问题,文章提出了一种基于图同构网络的高效Web模糊测试方法。首先,利用图同构网络在图表示和图结构学习方面的强大能力,在代码的控制流图上学习漏洞语义和结构特征,并进行基本块漏洞概率预测;然后,基于漏洞预测结果提出了漏洞概率和覆盖率双导向的Web应用模糊测试指导策略,在不降低覆盖率的同时优先探索含漏洞概率更高的程序位置,有效解决了现有Web应用模糊测试工具随机性大、效率低的问题;最后,基于以上方法实现了原型系统并进行实验评估。实验结果表明,与webFuzz相比,该原型系统的漏洞挖掘效率提高了40%,覆盖率扩大了5%。 展开更多
关键词 模糊测试 Web漏洞 图同构网络 漏洞挖掘
下载PDF
多头注意力机制的图同构网络智能合约源码漏洞检测
3
作者 师自通 师智斌 +2 位作者 刘冬明 雷海卫 龚晓元 《计算机工程与应用》 CSCD 北大核心 2024年第7期258-265,共8页
针对智能合约源码转化为字节码后部分语法、语义丢失,且现有漏洞检测方法精度低、误报率高,特别是对重入漏洞和时间戳漏洞的检测能力有限等问题,提出一种多头注意力机制的图同构网络智能合约源码漏洞检测方法。使用智能合约源码,结合重... 针对智能合约源码转化为字节码后部分语法、语义丢失,且现有漏洞检测方法精度低、误报率高,特别是对重入漏洞和时间戳漏洞的检测能力有限等问题,提出一种多头注意力机制的图同构网络智能合约源码漏洞检测方法。使用智能合约源码,结合重入漏洞和时间戳漏洞特点构建图结构并将其规范化;将规范化后的图结构数据投入图同构网络进行迭代训练,利用该网络强大的节点表示和图表示能力进行漏洞检测;在图同构网络的基础上增加多头注意力机制,进一步增强图同构网络的节点表示能力。实验结果显示该方法对重入漏洞和时间戳漏洞检测准确率达到93.08%和92.30%,相较于普通图同构网络方法分别提升1.44和2.00个百分点。证明该方法对相关漏洞的检测能力要优于其他检测工具。 展开更多
关键词 智能合约 漏洞检测 重入漏洞 时间戳漏洞 图同构网络 多头注意力机制
下载PDF
基于图同构网络的自闭症功能磁共振影像诊断算法
4
作者 张礼 王嘉瑞 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第5期801-809,共9页
图表示法通常用于个人或者总体级别上对结构化数据进行建模分析,已成功应用于网络分析、交通预测、推荐系统等领域.随着成像设备的发展和普及,从神经影像中学习脑的连接特性,开展基于脑网络的疾病诊断(自闭症、阿斯海默症等)受到广泛关... 图表示法通常用于个人或者总体级别上对结构化数据进行建模分析,已成功应用于网络分析、交通预测、推荐系统等领域.随着成像设备的发展和普及,从神经影像中学习脑的连接特性,开展基于脑网络的疾病诊断(自闭症、阿斯海默症等)受到广泛关注.图表示法可用于对一组大脑区域之间的结构或功能连接进行建模,揭示与大脑发育和疾病有关的模式,然而评估基于图结构的脑连接网络之间相似性并非易事.传统的深度学习方法无法适用图结构,会丢弃有益于图分类任务的信息,因此提出一个基于图同构网络的自闭症功能磁共振影像的诊断算法.该模型包含四层同构层,每层通过空间领域卷积学习得到脑功能连接网络的特征表示.为了考虑脑功能连接网络中节点的医学意义,将节点特征通过展平方式转换为图特征.在自闭症ABIDE数据库上对提出的方法进行验证,与图卷积网络和深度神经网络相比,实验结果证明提出的方法是有效的,明显提升了自闭症诊断准确性. 展开更多
关键词 自闭症 脑功能连接网络 图同构网络 功能磁共振影像
下载PDF
基于图神经网络的OMCI模型相似性计算
5
作者 袁佳伟 赵进 《计算机工程与科学》 CSCD 北大核心 2024年第9期1576-1586,共11页
光网络单元管理和控制接口OMCI,是千兆无源光网络GPON系统中光线路终端OLT与光网络单元ONU之间进行互联互通的重要协议。在解决OMCI互通问题的过程中,经常需要开发人员对OMCI业务模型进行异常分析,但由于OMCI领域知识的复杂性,对于缺乏... 光网络单元管理和控制接口OMCI,是千兆无源光网络GPON系统中光线路终端OLT与光网络单元ONU之间进行互联互通的重要协议。在解决OMCI互通问题的过程中,经常需要开发人员对OMCI业务模型进行异常分析,但由于OMCI领域知识的复杂性,对于缺乏经验的开发人员直接分析OMCI业务模型是非常困难的,并且耗时耗力。因此,针对上述实际问题中的挑战,提出了一种基于图神经网络进行OMCI模型异常分析的方法,通过图相似性计算算法,从数据库中查找相似的OMCI模型作为参考,然后比较差异性,找到异常点。首先将真实的OMCI数据构建成图数据,然后结合图同构网络与自注意力池化改进快速计算图相似性模型(SimGNN),最后计算OMCI图数据库中每个图与异常图数据的相似性得分,根据得分排名推荐出最相似的若干OMCI业务模型图。实验结果表明,改进的图相似性计算模型与基准模型相比,在OMCI数据集上性能有所提升,并且在实际应用中也是有效的,对OMCI互通问题的分析起到了一定的帮助作用。 展开更多
关键词 网络 OMCI 异常分析 图神经网络 图相似性计算 图同构网络
下载PDF
基于自适应平衡静动态联合网络的公交客流预测
6
作者 黄来安 朱杭雄 栗波 《计算机应用研究》 CSCD 北大核心 2024年第8期2360-2365,共6页
为解决现有公交客流预测方法多数利用预定义的图结构进行空间建模,对交通状况变化所引起客流波动考虑不充分,无法捕捉短时动态的空间依赖关系问题,提出一种自适应平衡静动态联合网络(ASDNet)模型。首先,利用时间卷积网络捕获序列的时间... 为解决现有公交客流预测方法多数利用预定义的图结构进行空间建模,对交通状况变化所引起客流波动考虑不充分,无法捕捉短时动态的空间依赖关系问题,提出一种自适应平衡静动态联合网络(ASDNet)模型。首先,利用时间卷积网络捕获序列的时间相关性;其次,利用图卷积捕捉站点之间整体空间信息,采用动态图同构网络捕捉相邻时隙动态图之间隐藏的动态依赖关系;最后,通过自适应平衡机制自适应地调节静动态联合网络之间的信息传递。在广州市真实公交数据集上进行了实验,结果表明,与多个基准模型相比,该模型在MAE、RMSE和MAPE预测误差指标上平均降低了12.2%、9.9%和15%,R2精确度指标上平均提高了6.3%。表明该模型能够有效地捕捉客流数据的时空变化规律,可为公交运营管理提供技术参考。 展开更多
关键词 公交客流预测 时间卷积网络 图卷积 动态图同构网络 自适应平衡静动态联合网络 时空变化
下载PDF
基于图Transformer网络的城市路网短时交通流预测模型
7
作者 周烽 王世璞 张坤鹏 《科学技术与工程》 北大核心 2024年第10期4307-4316,共10页
针对城市路网短时交通流预测问题,在考虑路网交通状态时空相关性基础上,提出了一种基于图Transformer(graph transformer,Graformer)的预测方法。该方法将多条路段的交通状态预测问题转化为图节点状态预测问题,针对区分相同结构的空间... 针对城市路网短时交通流预测问题,在考虑路网交通状态时空相关性基础上,提出了一种基于图Transformer(graph transformer,Graformer)的预测方法。该方法将多条路段的交通状态预测问题转化为图节点状态预测问题,针对区分相同结构的空间路网结构图,将带有边的图同构网络(graph isomorphism network with edges,GINE)和Transformer网络相结合,对交通状态在路网层面的时空相关性进行建模,从而实现城市路网短时交通流预测。具体来说,Graformer模型首先利用长短期记忆网络(long short-term memory,LSTM)对交通数据的时序信息进行预处理,接着采用基于GINE与Transformer的全局注意力机制提取交通数据的空间特征,最后实现路网各路段交通流的同步预测。 展开更多
关键词 短时交通流预测 图同构网络 TRANSFORMER 时空相关性
下载PDF
基于多通路神经网络模型预测药物敏感性响应
8
作者 李晴 闫效莺 靳艳春 《信息技术与信息化》 2024年第5期19-22,共4页
准确预测药物敏感性响应是当前个性化治疗的关键。利用深度学习强大的特征学习能力,提出一种基于多通道神经网络模型的预测方法。首先,采用深度学习算法对细胞系的多组学特征分别处理,采用多个图神经网络模块提取药物分子图的多级子结... 准确预测药物敏感性响应是当前个性化治疗的关键。利用深度学习强大的特征学习能力,提出一种基于多通道神经网络模型的预测方法。首先,采用深度学习算法对细胞系的多组学特征分别处理,采用多个图神经网络模块提取药物分子图的多级子结构特征;然后,引入共同注意力机制评价各通路特征组合对药物-细胞系敏感性响应的影响,优化细胞系和药物特征;最后,通过深层神经网络模型预测。通过基于GDSC和CCLE数据集的测试,并与RefDNN、DeepCDR和GraphCDR算法进行比较,验证算法性能。 展开更多
关键词 深度学习 药物-细胞系敏感性 基因表达 图同构网络 共同注意力
下载PDF
基于源码语义结构分析的智能合约漏洞检测方法 被引量:1
9
作者 李珊 王斌 王伟 《广州大学学报(自然科学版)》 CAS 2023年第4期56-65,共10页
近年来,智能合约已广泛应用于去中心化金融、供应链管理等领域。然而,智能合约漏洞给这些领域造成了严重的损失,由于智能合约部署在区块链上以后无法修改,开发人员写好智能合约后必须检测其安全性。现有的基于深度学习的检测方法大多使... 近年来,智能合约已广泛应用于去中心化金融、供应链管理等领域。然而,智能合约漏洞给这些领域造成了严重的损失,由于智能合约部署在区块链上以后无法修改,开发人员写好智能合约后必须检测其安全性。现有的基于深度学习的检测方法大多使用字节码和源码,然而,基于字节码的检测方法无法定位到漏洞可能出现的位置且直接检测向量化源码准确率低。为了提高漏洞检测的准确率,增加检测结果的可解释性,文章提出了基于源码语义结构分析的智能合约漏洞检测方法。首先,将智能合约源代码转化为抽象语法树,研究源代码和抽象语法树的语法关系;其次,通过对以太坊中合约的抽象语法树属性特征和漏洞特性进行分析,发现5种漏洞相关属性特征,并围绕这些节点特征将抽象语法树进行切片,得到与漏洞特性相关的子树切片;最后,提取子树切片的结构特征和属性特征,并将其表示为图结构。使用具有更好图表示能力的图同构网络模型检测子树切片的图结构并利用33812个以太坊上的智能合约进行实验,实验结果表明,文章所提出的方法有效性显著高于其他方法,Macro-F1超过90%,未检查返回值和重入这两种漏洞的F1-score分别达到97%和92%。 展开更多
关键词 区块链 智能合约 抽象语法树 图同构网络
下载PDF
融合多重特征的噪声网络对齐方法
10
作者 咸宁 范意兴 +1 位作者 廉涛 郭嘉丰 《山东大学学报(理学版)》 CAS CSCD 北大核心 2024年第7期64-75,共12页
针对网络对齐任务中网络结构差异大和锚节点对噪声大的问题,提出一种基于多轮迭代的网络对齐方法。该方法在每轮迭代时使用多种启发式方法计算不同维度的节点特征,利用多重特征的组合来评估锚节点的可靠性,过滤其中潜在的噪声,增强每轮... 针对网络对齐任务中网络结构差异大和锚节点对噪声大的问题,提出一种基于多轮迭代的网络对齐方法。该方法在每轮迭代时使用多种启发式方法计算不同维度的节点特征,利用多重特征的组合来评估锚节点的可靠性,过滤其中潜在的噪声,增强每轮对齐过程的置信度;使用图神经网络增强无属性节点之间的一致性,减轻网络结构差异带来的影响。实验结果表明,该方法可以在高噪声的情况下具有高准确率,验证了其有效性。 展开更多
关键词 网络对齐 图同构网络 噪声过滤 图元
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部