采用人工模拟降雨的方法对黄土坡面土壤侵蚀过程进行了试验研究,取得了如下结果:①坡面土壤侵蚀随降雨过程的变化可用幂函数相关方程进行描述,15 m in和35 m in是土壤侵蚀强度随降雨过程变化的转折点;②雨强对坡面土壤侵蚀的影响可用幂...采用人工模拟降雨的方法对黄土坡面土壤侵蚀过程进行了试验研究,取得了如下结果:①坡面土壤侵蚀随降雨过程的变化可用幂函数相关方程进行描述,15 m in和35 m in是土壤侵蚀强度随降雨过程变化的转折点;②雨强对坡面土壤侵蚀的影响可用幂函数相关方程进行描述,随着坡度的增大,土壤侵蚀强度随雨强的增大而增加的趋势更明显;③坡度对土壤侵蚀的影响可用抛物线相关方程进行描述,土壤侵蚀强度变化的临界坡度在25°附近;④坡长对土壤侵蚀的影响大体可用幂函数相关方程进行描述,但坡长对土壤侵蚀强度的影响比较复杂,随雨强大小的变化而表现为不同的形式;⑤坡度、坡长及雨强对坡面土壤侵蚀的综合影响可用多元线性相关方程进行描述,雨强对土壤侵蚀强度的影响远大于坡长及坡度因子,且坡度与土壤侵蚀强度的关系较坡长为密切。展开更多
Under global warming, storm events tend to intensify, particularly in monsoon-affected regions. As an important agricultural area in China, the purple soil region in the Sichuan Basin, where it has a prevailing monsoo...Under global warming, storm events tend to intensify, particularly in monsoon-affected regions. As an important agricultural area in China, the purple soil region in the Sichuan Basin, where it has a prevailing monsoon climate, is threatened by serious soil erosion. Tillage operations alter runoff and soil erosion processes on croplands by changing the physical properties of the soil surface. To clarify the relationship between tillage and soil erosion in the purple soil region, three different tillage practices in this region were investigated at the plot scale over 4 years: bare land with minimum tillage (BL), conventional tillage (CT) and seasonal no-tillage ridges (SNTR) which was initially designed to prevent soil erosion by contoured ridges and no-tillage techniques. The results showed that although there were no significant differences in the surface runoff and soil erosion among the three oractices, BL caused relatively high surface runoff and soil erosion, followed by CT and SNTR. Classification and comparison of the rainfall events based on cluster analysis (CA) verified that the surface runoff was not significantly different between most intensive event and long intensive events but was significantly different between most intensive and short and medium-duration events. Only the rainfall events with the highest rainfall intensity could trigger serious soil erosion, up to 1000 kg ha^-1 in the region. Further detailed investigations on the effects of tillage operations on the soil erosion in a subtropical region with a monsoon climate are needed to provide a basis for modeling catchments and designing better management practices.展开更多
Land cultivation and tillage process, and their consequent impacts on soil erosion, have been criticized as the main cause of degradation of land or soil quality. However, purple soils, classified as Regosols in FAO T...Land cultivation and tillage process, and their consequent impacts on soil erosion, have been criticized as the main cause of degradation of land or soil quality. However, purple soils, classified as Regosols in FAO Taxonomy or Entisols in USDA Taxonomy, are formed from purple rocks of the Trias- Cretaceous system, have been developed or at least accelerated the development due to continual tillage operation, especially digging and ridging. The present study took micromorphological investigation on the sedimentary rocks and the soils under different operations of tillage. Results show that the purple rock of Feixiangguan Formation of the Trias system (Tlf) is the easiest to physical weathering and the most fertile soil material enriched in nutrients, and it has been, therefore, mostly cultivated and intensively tilled around the year. It has the fastest soil formation rate. Soil formation rate in the cropland with conventional tillage is higher than that in the forestiand and the grassland. It implies that the artificial brokenness and tillage disturbance play a great role in physical weathering and initiating soil formation processes.展开更多
Using Geographic Information System(GIS), based on wind speed, precipitation, topographic, soil, vegetation coverage and land use data of Inner Mongolia between 2001 and 2010, we applied the revised wind erosion equat...Using Geographic Information System(GIS), based on wind speed, precipitation, topographic, soil, vegetation coverage and land use data of Inner Mongolia between 2001 and 2010, we applied the revised wind erosion equation(RWEQ) model to simulate wind erosion intensity. The results showed that an area of approximately 47.8 × 10~4 km^2 experienced wind erosion in 2010, 23.2% of this erosion could be rated as severe, and 46.0% as moderate. Both the area and the intensity of wind erosion had decreased from 2001 to 2010, the wind erosion area reduced 10.1%, and wind erosion intensity decreased by 29.4%. Precipitation, wind speed, population size and urbanization in rural areas, and gross domestic product of primary industry(GDP1) were the main factors influencing wind erosion. Overall, these factors accounted for 88.8% of the wind erosion. These results indicated that the decrease in wind erosion over the past decade related to the increase in precipitation and the decrease in the number of windy days, while modest urban development and optimization of the economic structure might partially reduced the level of ecological pressure, highlighting the importance of human activities in controlling wind erosion.展开更多
Improved understanding of the effect of shrub cover on soil erosion process will provide valuable information for soil and water conservation programs.Laboratory rainfall simulations were conducted to determine the ef...Improved understanding of the effect of shrub cover on soil erosion process will provide valuable information for soil and water conservation programs.Laboratory rainfall simulations were conducted to determine the effects of shrubs on runoff and soil erosion and to ascertain the relationship between the rate of soil loss and the runoff hydrodynamic characteristics.In these simulations a 20° slope was subjected to rainfall intensities of 45,87,and 127 mm/h.The average runoff rates ranged from 0.51 to 1.26 mm/min for bare soil plots and 0.15 to 0.96 mm/min for shrub plots.Average soil loss rates varied from 44.19 to 114.61 g/(min·m^2) for bare soil plots and from 5.61 to 84.58 g/(min·m^2) for shrub plots.There was a positive correlation between runoff and soil loss for the bare soil plots,and soil loss increased with increased runoff for shrub plots only when rainfall intensity is 127 mm/h.Runoff and soil erosion processes were strongly influenced by soil surface conditions because of the formation of erosion pits and rills.The unit stream power was the optimal hydrodynamic parameter to characterize the soil erosion mechanisms.The soil loss rate increased linearly with the unit stream power on both shrub and bare soil plots.Critical unit stream power values were 0.004 m/s for bare soil plots and 0.017 m/s for shrub plots.展开更多
Soil erosion by water is one of the most important land degradation processes in the sloping rainfed lands in Pakistan. A study was conducted in the Dhrabi watershed of Pakistan to evaluate sediment yield associated w...Soil erosion by water is one of the most important land degradation processes in the sloping rainfed lands in Pakistan. A study was conducted in the Dhrabi watershed of Pakistan to evaluate sediment yield associated with rainfall-runoff under various land-use practices. Five sub-catchments with sizes varying from 1.5 to 350 ha were selected for measurement of rainfall, runoff and sediment yield. Soil conservation techniques were also introduced to reduce the soil erosion. All runoff events occurred in the summer especially during monsoon season (July-September). Sediment yield of two small gully catchments ranged from 4.79 to 8.34 t/ha/yr in 2009, a relatively dry year. In 2010, the annual sediment yield was 8.15 to 12.31 t/ha. Terraced catchment with arable crops produced annual 4.1 t/ha of sediment as compared to 12.31 t/ha by the adjacent gully catchment showing high potential of terraces in reducing erosion. Runoff coefficients calculated for these catchments vary from 0.09 to 0.75. The macro and micro nutrients present in the sediment indicate that these nutrients are being depleted due to soil erosion.展开更多
Rills are frequently observed on slope farmlands and rill erosion significantly contributes to sediment yields. This paper focuses on reviewing the various factors affecting rill erosion processes and the threshold co...Rills are frequently observed on slope farmlands and rill erosion significantly contributes to sediment yields. This paper focuses on reviewing the various factors affecting rill erosion processes and the threshold conditions of rill initiation. Six factors, including rainfall, runoff, soil, topography, vegetation and tillage system, are discussed. Rill initiation and network are explored. Runoff erosivity and soil erodibility are recognized as two direct factors affecting rill erosion and other types of factors may have indirect influences on rill erosion through increasing or decreasing the effects of the direct factors. Certain conditions are necessary for rill initiation and the critical conditions are different with different factors. Future studies should be focused on 1) the dynamic changes of rill networks; 2) the combined effect of multiple factors; and 3) the relationships of threshold values with other related factors.展开更多
Recent advances in computer with geographic information system(GIS) technologies have allowed modelers to develop physics-based models for modeling soil erosion processes in time and space.However, it has been widely ...Recent advances in computer with geographic information system(GIS) technologies have allowed modelers to develop physics-based models for modeling soil erosion processes in time and space.However, it has been widely recognized that the effect of uncertainties on model predictions may be more significant when modelers apply such models for their own modeling purposes.Sources of uncertainty involved in modeling include data, model structural, and parameter uncertainty.To deal with the uncertain parameters of a catchment-scale soil erosion model(CSEM) and assess simulation uncertainties in soil erosion, particle filtering modeling(PF) is introduced in the CSEM.The proposed method, CSEM-PF, estimates parameters of non-linear and non-Gaussian systems, such as a physics-based soil erosion model by assimilating observation data such as discharge and sediment discharge sequences at outlets.PF provides timevarying feasible parameter sets as well as uncertainty bounds of outputs while traditional automatic calibration techniques result in a time-invariant global optimal parameter set.CSEM-PF was applied to a small mountainous catchment of the Yongdamdam in Korea for soil erosion modeling and uncertainty assessment for three historical typhoon events.Finally, the most optimal parameter sets and uncertainty bounds of simulation of both discharge and sediment discharge at each time step of the study events are provided.展开更多
文摘采用人工模拟降雨的方法对黄土坡面土壤侵蚀过程进行了试验研究,取得了如下结果:①坡面土壤侵蚀随降雨过程的变化可用幂函数相关方程进行描述,15 m in和35 m in是土壤侵蚀强度随降雨过程变化的转折点;②雨强对坡面土壤侵蚀的影响可用幂函数相关方程进行描述,随着坡度的增大,土壤侵蚀强度随雨强的增大而增加的趋势更明显;③坡度对土壤侵蚀的影响可用抛物线相关方程进行描述,土壤侵蚀强度变化的临界坡度在25°附近;④坡长对土壤侵蚀的影响大体可用幂函数相关方程进行描述,但坡长对土壤侵蚀强度的影响比较复杂,随雨强大小的变化而表现为不同的形式;⑤坡度、坡长及雨强对坡面土壤侵蚀的综合影响可用多元线性相关方程进行描述,雨强对土壤侵蚀强度的影响远大于坡长及坡度因子,且坡度与土壤侵蚀强度的关系较坡长为密切。
基金support of this study was provided by the National Natural Science Foundation of China (Grant No. 41371241 and 41101202)the Western Development Plan of Chinese Academy of Sciences (Grant No. KZCX2XB3-09)the National Basic Research Program of the Ministry of Science and Technology of China (Grant No. 2012CB417101)
文摘Under global warming, storm events tend to intensify, particularly in monsoon-affected regions. As an important agricultural area in China, the purple soil region in the Sichuan Basin, where it has a prevailing monsoon climate, is threatened by serious soil erosion. Tillage operations alter runoff and soil erosion processes on croplands by changing the physical properties of the soil surface. To clarify the relationship between tillage and soil erosion in the purple soil region, three different tillage practices in this region were investigated at the plot scale over 4 years: bare land with minimum tillage (BL), conventional tillage (CT) and seasonal no-tillage ridges (SNTR) which was initially designed to prevent soil erosion by contoured ridges and no-tillage techniques. The results showed that although there were no significant differences in the surface runoff and soil erosion among the three oractices, BL caused relatively high surface runoff and soil erosion, followed by CT and SNTR. Classification and comparison of the rainfall events based on cluster analysis (CA) verified that the surface runoff was not significantly different between most intensive event and long intensive events but was significantly different between most intensive and short and medium-duration events. Only the rainfall events with the highest rainfall intensity could trigger serious soil erosion, up to 1000 kg ha^-1 in the region. Further detailed investigations on the effects of tillage operations on the soil erosion in a subtropical region with a monsoon climate are needed to provide a basis for modeling catchments and designing better management practices.
基金supported by the CAS West-Developing Initiative (Grant No. KZCX2-XB2-07)the Key Technologies R & D Program of China (Grant No. 2008BAD98B04)
文摘Land cultivation and tillage process, and their consequent impacts on soil erosion, have been criticized as the main cause of degradation of land or soil quality. However, purple soils, classified as Regosols in FAO Taxonomy or Entisols in USDA Taxonomy, are formed from purple rocks of the Trias- Cretaceous system, have been developed or at least accelerated the development due to continual tillage operation, especially digging and ridging. The present study took micromorphological investigation on the sedimentary rocks and the soils under different operations of tillage. Results show that the purple rock of Feixiangguan Formation of the Trias system (Tlf) is the easiest to physical weathering and the most fertile soil material enriched in nutrients, and it has been, therefore, mostly cultivated and intensively tilled around the year. It has the fastest soil formation rate. Soil formation rate in the cropland with conventional tillage is higher than that in the forestiand and the grassland. It implies that the artificial brokenness and tillage disturbance play a great role in physical weathering and initiating soil formation processes.
基金Under the auspices of National Key Technology Research and Development Program of China(No.2011BAC09B08)Special Issue of National Remote Sensing Survey and Assessment of Eco-Environment Change Between 2000 and 2010(No.STSN-04-01)
文摘Using Geographic Information System(GIS), based on wind speed, precipitation, topographic, soil, vegetation coverage and land use data of Inner Mongolia between 2001 and 2010, we applied the revised wind erosion equation(RWEQ) model to simulate wind erosion intensity. The results showed that an area of approximately 47.8 × 10~4 km^2 experienced wind erosion in 2010, 23.2% of this erosion could be rated as severe, and 46.0% as moderate. Both the area and the intensity of wind erosion had decreased from 2001 to 2010, the wind erosion area reduced 10.1%, and wind erosion intensity decreased by 29.4%. Precipitation, wind speed, population size and urbanization in rural areas, and gross domestic product of primary industry(GDP1) were the main factors influencing wind erosion. Overall, these factors accounted for 88.8% of the wind erosion. These results indicated that the decrease in wind erosion over the past decade related to the increase in precipitation and the decrease in the number of windy days, while modest urban development and optimization of the economic structure might partially reduced the level of ecological pressure, highlighting the importance of human activities in controlling wind erosion.
基金Under the auspices of National Basic Research Program of China(No.2011CB403303)National Natural Science Foundation of China(No.41571276)+1 种基金Innovation Scientists and Technicians Troop Construction Projects of Henan Province(No.162101510004)Foundation of Yellow River Institute of Hydraulic Research of China(No.HKY-JBYW-2016-33)
文摘Improved understanding of the effect of shrub cover on soil erosion process will provide valuable information for soil and water conservation programs.Laboratory rainfall simulations were conducted to determine the effects of shrubs on runoff and soil erosion and to ascertain the relationship between the rate of soil loss and the runoff hydrodynamic characteristics.In these simulations a 20° slope was subjected to rainfall intensities of 45,87,and 127 mm/h.The average runoff rates ranged from 0.51 to 1.26 mm/min for bare soil plots and 0.15 to 0.96 mm/min for shrub plots.Average soil loss rates varied from 44.19 to 114.61 g/(min·m^2) for bare soil plots and from 5.61 to 84.58 g/(min·m^2) for shrub plots.There was a positive correlation between runoff and soil loss for the bare soil plots,and soil loss increased with increased runoff for shrub plots only when rainfall intensity is 127 mm/h.Runoff and soil erosion processes were strongly influenced by soil surface conditions because of the formation of erosion pits and rills.The unit stream power was the optimal hydrodynamic parameter to characterize the soil erosion mechanisms.The soil loss rate increased linearly with the unit stream power on both shrub and bare soil plots.Critical unit stream power values were 0.004 m/s for bare soil plots and 0.017 m/s for shrub plots.
文摘Soil erosion by water is one of the most important land degradation processes in the sloping rainfed lands in Pakistan. A study was conducted in the Dhrabi watershed of Pakistan to evaluate sediment yield associated with rainfall-runoff under various land-use practices. Five sub-catchments with sizes varying from 1.5 to 350 ha were selected for measurement of rainfall, runoff and sediment yield. Soil conservation techniques were also introduced to reduce the soil erosion. All runoff events occurred in the summer especially during monsoon season (July-September). Sediment yield of two small gully catchments ranged from 4.79 to 8.34 t/ha/yr in 2009, a relatively dry year. In 2010, the annual sediment yield was 8.15 to 12.31 t/ha. Terraced catchment with arable crops produced annual 4.1 t/ha of sediment as compared to 12.31 t/ha by the adjacent gully catchment showing high potential of terraces in reducing erosion. Runoff coefficients calculated for these catchments vary from 0.09 to 0.75. The macro and micro nutrients present in the sediment indicate that these nutrients are being depleted due to soil erosion.
基金Under the auspices of National Natural Science Foundation of China(No. 40971165,41001165)Open Foundation of State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau(No. K318009902-1315)
文摘Rills are frequently observed on slope farmlands and rill erosion significantly contributes to sediment yields. This paper focuses on reviewing the various factors affecting rill erosion processes and the threshold conditions of rill initiation. Six factors, including rainfall, runoff, soil, topography, vegetation and tillage system, are discussed. Rill initiation and network are explored. Runoff erosivity and soil erodibility are recognized as two direct factors affecting rill erosion and other types of factors may have indirect influences on rill erosion through increasing or decreasing the effects of the direct factors. Certain conditions are necessary for rill initiation and the critical conditions are different with different factors. Future studies should be focused on 1) the dynamic changes of rill networks; 2) the combined effect of multiple factors; and 3) the relationships of threshold values with other related factors.
基金supported by Korea Ministry of Environment(MOE)as"GAIA Program2014000540005"
文摘Recent advances in computer with geographic information system(GIS) technologies have allowed modelers to develop physics-based models for modeling soil erosion processes in time and space.However, it has been widely recognized that the effect of uncertainties on model predictions may be more significant when modelers apply such models for their own modeling purposes.Sources of uncertainty involved in modeling include data, model structural, and parameter uncertainty.To deal with the uncertain parameters of a catchment-scale soil erosion model(CSEM) and assess simulation uncertainties in soil erosion, particle filtering modeling(PF) is introduced in the CSEM.The proposed method, CSEM-PF, estimates parameters of non-linear and non-Gaussian systems, such as a physics-based soil erosion model by assimilating observation data such as discharge and sediment discharge sequences at outlets.PF provides timevarying feasible parameter sets as well as uncertainty bounds of outputs while traditional automatic calibration techniques result in a time-invariant global optimal parameter set.CSEM-PF was applied to a small mountainous catchment of the Yongdamdam in Korea for soil erosion modeling and uncertainty assessment for three historical typhoon events.Finally, the most optimal parameter sets and uncertainty bounds of simulation of both discharge and sediment discharge at each time step of the study events are provided.