针对基于传感器的行为识别任务中识别场景单一且固定的问题,提出一种多场景下基于传感器的行为识别迁移模型,由基于传感器的动态感知算法(dynamic perception algorithm,DPA)和自适应场景的行为识别迁移方法(adaptive scene human recog...针对基于传感器的行为识别任务中识别场景单一且固定的问题,提出一种多场景下基于传感器的行为识别迁移模型,由基于传感器的动态感知算法(dynamic perception algorithm,DPA)和自适应场景的行为识别迁移方法(adaptive scene human recognition,AHR)两部分组成,解决在固定场景下对传感器的依赖性以及在场景转换时识别模型失效的问题。DPA提出两阶段迁移模式,将行为识别阶段和模型迁移阶段同步推进,保证模型在传感器异动发生后仍能持续拥有识别能力。进一步提出AHR场景迁移方法,实现模型在多场景下的行为识别能力。实验验证该模型具有更优的适应性和可扩展性。展开更多
In order to solve the problems of color bias and visual deviation caused by inaccurate estimation of transmittance and atmospheric light in image defogging,a new algorithm based on multi-scale morphological reconstruc...In order to solve the problems of color bias and visual deviation caused by inaccurate estimation of transmittance and atmospheric light in image defogging,a new algorithm based on multi-scale morphological reconstruction with adaptive transmittance and atmospheric light correction was proposed.Firstly,the algorithm used the open operation under morphological reconstruction to replace the minimum filter operation in the dark channel,and used the morphological edge to set the scale of the open operation structure elements,and constructed a multi-scale open operation fusion dark channel.After morphological noise reduction,the exact initial transmittance was obtained.According to the relationship between brightness and saturation difference and transmittance,an adaptive transmittance correction model was fitted with Gaussian function to correct the initial transmittance of the sky fog map.Then the local atmospheric light was improved according to the image brightness information and morphology closure operation.Finally,the proposed algorithm was combined with the atmospheric scattering model to obtain an accurate fog free image.The experimental results showed that the proposed algorithm was suitable for fog image restoration under various scenes,the restoration effect was good,and the brightness was suitable.展开更多
文摘针对基于传感器的行为识别任务中识别场景单一且固定的问题,提出一种多场景下基于传感器的行为识别迁移模型,由基于传感器的动态感知算法(dynamic perception algorithm,DPA)和自适应场景的行为识别迁移方法(adaptive scene human recognition,AHR)两部分组成,解决在固定场景下对传感器的依赖性以及在场景转换时识别模型失效的问题。DPA提出两阶段迁移模式,将行为识别阶段和模型迁移阶段同步推进,保证模型在传感器异动发生后仍能持续拥有识别能力。进一步提出AHR场景迁移方法,实现模型在多场景下的行为识别能力。实验验证该模型具有更优的适应性和可扩展性。
基金supported by National Natural Science Foundation of China(No.61561030)College Industry Support Plan Project of Gansu Provincial Department of Education(No.2021CYZC-04)Educational Reform Fund of Lanzhou Jiaotong University(No.JG201928)。
文摘In order to solve the problems of color bias and visual deviation caused by inaccurate estimation of transmittance and atmospheric light in image defogging,a new algorithm based on multi-scale morphological reconstruction with adaptive transmittance and atmospheric light correction was proposed.Firstly,the algorithm used the open operation under morphological reconstruction to replace the minimum filter operation in the dark channel,and used the morphological edge to set the scale of the open operation structure elements,and constructed a multi-scale open operation fusion dark channel.After morphological noise reduction,the exact initial transmittance was obtained.According to the relationship between brightness and saturation difference and transmittance,an adaptive transmittance correction model was fitted with Gaussian function to correct the initial transmittance of the sky fog map.Then the local atmospheric light was improved according to the image brightness information and morphology closure operation.Finally,the proposed algorithm was combined with the atmospheric scattering model to obtain an accurate fog free image.The experimental results showed that the proposed algorithm was suitable for fog image restoration under various scenes,the restoration effect was good,and the brightness was suitable.