肺结节在CT(Computed Tomography)图像中所占像素较少,增加了检测难度。针对肺结节小目标检测问题,文中提出了融合坐标注意力机制的YOLOv3(You Only Look Once version 3)肺结节检测算法。主干网络采用改进YOLOv3,减少残差块数量并引入...肺结节在CT(Computed Tomography)图像中所占像素较少,增加了检测难度。针对肺结节小目标检测问题,文中提出了融合坐标注意力机制的YOLOv3(You Only Look Once version 3)肺结节检测算法。主干网络采用改进YOLOv3,减少残差块数量并引入扩张卷积模块,并可从目标周围感知上下文信息。在特征利用部分引入坐标注意力机制,捕捉肺结节位置、方向和跨通道信息,精确定位肺结节。改进YOLOv3的损失函数,将边界框建模成高斯分布,利用Wasserstein距离来计算两个分布之间的相似度代替IoU(Intersection over Union)度量,提升模型对目标尺度的敏感性。在LUNA16数据集上的结果显示,肺结节检测的平均精度为89.96%,敏感性为95.37%,与主流目标检测算法相比,精度平均提升了11.33%,敏感性平均提升了9.03%。展开更多
针对现有图像超分辨率重建模型参数过大,难以在现实中应用的问题,提出了一种单图像超分辨率重建模型——基于坐标注意力机制的生成对抗网络(Generative Adversarial Network Based on Coordinate Attention Mechanism,CSRGAN).通过优化...针对现有图像超分辨率重建模型参数过大,难以在现实中应用的问题,提出了一种单图像超分辨率重建模型——基于坐标注意力机制的生成对抗网络(Generative Adversarial Network Based on Coordinate Attention Mechanism,CSRGAN).通过优化在SRGAN的生成器,将坐标注意力机制与残差网络相结合构造CR模块,促进通道之间信息的流通,并加强了网络的特征选择能力;同时在主网络构建了层次化特征融合结构,提高在深层网络中对早期特征的利用,大量的长短跳连接缓解了梯度消失,提高了网络收敛速度.在Set5、Set14、BSD100和Urban100数据集上与RFB-ESRGAN、ESRGAN等模型进行测试,在峰值信噪比(PSNR)和结构相似度(SSIM)都有所提高,同时模型参数量有极大减少,重建的图像在清晰度、结构完整性等方面都有所提高.展开更多
文摘肺结节在CT(Computed Tomography)图像中所占像素较少,增加了检测难度。针对肺结节小目标检测问题,文中提出了融合坐标注意力机制的YOLOv3(You Only Look Once version 3)肺结节检测算法。主干网络采用改进YOLOv3,减少残差块数量并引入扩张卷积模块,并可从目标周围感知上下文信息。在特征利用部分引入坐标注意力机制,捕捉肺结节位置、方向和跨通道信息,精确定位肺结节。改进YOLOv3的损失函数,将边界框建模成高斯分布,利用Wasserstein距离来计算两个分布之间的相似度代替IoU(Intersection over Union)度量,提升模型对目标尺度的敏感性。在LUNA16数据集上的结果显示,肺结节检测的平均精度为89.96%,敏感性为95.37%,与主流目标检测算法相比,精度平均提升了11.33%,敏感性平均提升了9.03%。
文摘针对现有图像超分辨率重建模型参数过大,难以在现实中应用的问题,提出了一种单图像超分辨率重建模型——基于坐标注意力机制的生成对抗网络(Generative Adversarial Network Based on Coordinate Attention Mechanism,CSRGAN).通过优化在SRGAN的生成器,将坐标注意力机制与残差网络相结合构造CR模块,促进通道之间信息的流通,并加强了网络的特征选择能力;同时在主网络构建了层次化特征融合结构,提高在深层网络中对早期特征的利用,大量的长短跳连接缓解了梯度消失,提高了网络收敛速度.在Set5、Set14、BSD100和Urban100数据集上与RFB-ESRGAN、ESRGAN等模型进行测试,在峰值信噪比(PSNR)和结构相似度(SSIM)都有所提高,同时模型参数量有极大减少,重建的图像在清晰度、结构完整性等方面都有所提高.