In order to obtain coding gain along with diversity gain,rotation code was applied to cooperative diversity employing decoded-and-forward cooperative protocol.Different from the same two symbols transmitted in convent...In order to obtain coding gain along with diversity gain,rotation code was applied to cooperative diversity employing decoded-and-forward cooperative protocol.Different from the same two symbols transmitted in conventional repetition-coded scheme,two different symbols were transmitted separately in two successive timeslots in the proposed rotation-coded cooperative diversity.In this way,constellation spread in the available two-dimensional signal space rather than on a single-dimensional line in repetition-coded scheme,which was supposed to be responsible for the additional coding gain.Under the proposed cooperative transmission model,upper bounds for the symbol-error-rate(SER)of cooperative diversity based on repetition code and rotation code were derived respectively.Both analytical and simulated results show that cooperative diversity based on rotation code can obtain an improved coding gain(by about 2 dB)than repetition-coded scheme without the expense of power or bandwidth.展开更多
We developed a novel absolute multi-pole encoder structure to improve the resolution of the multi-pole encoder, realize absolute output and reduce the manufacturing cost of the encoder. The structure includes two ring...We developed a novel absolute multi-pole encoder structure to improve the resolution of the multi-pole encoder, realize absolute output and reduce the manufacturing cost of the encoder. The structure includes two ring alnicos defined as index track and sub-division track, respectively. The index track is magnetized based on the improved gray code, with linear halls placed around the track evenly. The outputs of linear halls show the region the rotor belongs to. The sub-division track is magnetized to N-S-N-S (north-south-north-south), and the number of N-S pole pairs is determined by the index track. Three linear hall sensors with an air-gap of 2 mm are used to translate the magnetic filed to voltage signals. The relative offset in a single N-S is obtained through look-up. The magnetic encoder is calibrated using a higher-resolution incremental optical encoder. The pulse output from the optical encoder and hall signals from the magnetic encoder are sampled at the same time and transmitted to a computer, and the relation between them is calculated, and stored in the FLASH of MCU (micro controller unit) for look-up. In the working state, the absolute angle is derived by looking-up with hall signals. The structure is simple and the manufacturing cost is very low and suitable for mass production.展开更多
A new approach, named TCP-I2NC, is proposed to improve the interaction between network coding and TCP and to maximize the network utility in interference-free multi-radio multi-channel wireless mesh networks. It is gr...A new approach, named TCP-I2NC, is proposed to improve the interaction between network coding and TCP and to maximize the network utility in interference-free multi-radio multi-channel wireless mesh networks. It is grounded on a Network Utility Maxmization (NUM) formulation which can be decomposed into a rate control problem and a packet scheduling problem. The solutions to these two problems perform resource allocation among different flows. Simulations demonstrate that TCP-I2NC results in a significant throughput gain and a small delay jitter. Network resource is fairly allocated via the solution to the NUM problem and the whole system also runs stably. Moreover, TCP-I2NC is compatible with traditional TCP variants.展开更多
Labeling information in a complex irregular region is a useful procedure occurring frequently in sheet metal and the furniture industry which will be beneficial in parts management.A fast code-based labeler(FCBL) is p...Labeling information in a complex irregular region is a useful procedure occurring frequently in sheet metal and the furniture industry which will be beneficial in parts management.A fast code-based labeler(FCBL) is proposed to accomplish this objective in this paper.The region is first discretized,and then encoded by the Freeman encoding technique for providing the 2D regional information by 1D codes with redundancies omitted.We enhance the encoding scheme to make it more suitable for our complex problem.Based on the codes,searching algorithms are designed and can be extended with customized constraints.In addition,by introducing a smart optimal direction estimation,the labeling speed and accuracy of FCBL are significantly improved.Experiments with a large range of real data gained from industrial factories demonstrate the stability and millisecond-level speed of FCBL.The proposed method has been integrated into a shipbuilding CAD system,and plays a very important role in ship parts labeling process.展开更多
Prospective memory (PM) refers to memory for future intentions.Difference due to memory (Dm effect) is the difference in neural activity related to stimuli that were subsequently remembered or forgotten.Using event-re...Prospective memory (PM) refers to memory for future intentions.Difference due to memory (Dm effect) is the difference in neural activity related to stimuli that were subsequently remembered or forgotten.Using event-related potentials (ERPs),the present study investigated the Dm effect for PM using a subsequent task-switching paradigm.The results showed that a Dm effect of ERP P150 was more positive-going for later PM hit trials than for later PM forgotten trials during 100–200 ms.This Dm effect may reflect the process for the production of future intention or the process for attention.Consistent with previously reported Dm effects of other types of memory,we found that the fbN2 (250–280 ms) and late positivity component (400–700 ms) were stronger in later PM hit trials than in forgotten trials.The fbN2 was evoked by Chinese characters.The late positivity component was related to the precise encoding process.In conclusion,because of the early P150,PM encoding appears to be somewhat different from previously identified Dm effects.However,further research is needed.Our findings reveal that Dm effects of PM share similar characteristics with known Dm effects of other types of episodic memory after the very early stage of neural processing.展开更多
基金Project(2006AA01Z270)supported by the National High Technology Research and Development Program of ChinaProject(U0635003)supported by the National Natural Science Foundation of Guangdong Province,ChinaProject(2007F07)supported by the National Science Foundation of Shaanxi Province,China
文摘In order to obtain coding gain along with diversity gain,rotation code was applied to cooperative diversity employing decoded-and-forward cooperative protocol.Different from the same two symbols transmitted in conventional repetition-coded scheme,two different symbols were transmitted separately in two successive timeslots in the proposed rotation-coded cooperative diversity.In this way,constellation spread in the available two-dimensional signal space rather than on a single-dimensional line in repetition-coded scheme,which was supposed to be responsible for the additional coding gain.Under the proposed cooperative transmission model,upper bounds for the symbol-error-rate(SER)of cooperative diversity based on repetition code and rotation code were derived respectively.Both analytical and simulated results show that cooperative diversity based on rotation code can obtain an improved coding gain(by about 2 dB)than repetition-coded scheme without the expense of power or bandwidth.
基金Funded partly by Heilongjiang Province Financial Fund for Researchers Returning from Abroad
文摘We developed a novel absolute multi-pole encoder structure to improve the resolution of the multi-pole encoder, realize absolute output and reduce the manufacturing cost of the encoder. The structure includes two ring alnicos defined as index track and sub-division track, respectively. The index track is magnetized based on the improved gray code, with linear halls placed around the track evenly. The outputs of linear halls show the region the rotor belongs to. The sub-division track is magnetized to N-S-N-S (north-south-north-south), and the number of N-S pole pairs is determined by the index track. Three linear hall sensors with an air-gap of 2 mm are used to translate the magnetic filed to voltage signals. The relative offset in a single N-S is obtained through look-up. The magnetic encoder is calibrated using a higher-resolution incremental optical encoder. The pulse output from the optical encoder and hall signals from the magnetic encoder are sampled at the same time and transmitted to a computer, and the relation between them is calculated, and stored in the FLASH of MCU (micro controller unit) for look-up. In the working state, the absolute angle is derived by looking-up with hall signals. The structure is simple and the manufacturing cost is very low and suitable for mass production.
基金This work was supported by the State Key Program of Na- tional Nature Science Foundation of China under Grants No. U0835003, No. 60872087.
文摘A new approach, named TCP-I2NC, is proposed to improve the interaction between network coding and TCP and to maximize the network utility in interference-free multi-radio multi-channel wireless mesh networks. It is grounded on a Network Utility Maxmization (NUM) formulation which can be decomposed into a rate control problem and a packet scheduling problem. The solutions to these two problems perform resource allocation among different flows. Simulations demonstrate that TCP-I2NC results in a significant throughput gain and a small delay jitter. Network resource is fairly allocated via the solution to the NUM problem and the whole system also runs stably. Moreover, TCP-I2NC is compatible with traditional TCP variants.
基金supported by the National Natural Science Foundation of China(Nos.60873181,60673006 and 60533060)the Program for New Century Excellent Talents in University,China(No.NCET-05-0275)
文摘Labeling information in a complex irregular region is a useful procedure occurring frequently in sheet metal and the furniture industry which will be beneficial in parts management.A fast code-based labeler(FCBL) is proposed to accomplish this objective in this paper.The region is first discretized,and then encoded by the Freeman encoding technique for providing the 2D regional information by 1D codes with redundancies omitted.We enhance the encoding scheme to make it more suitable for our complex problem.Based on the codes,searching algorithms are designed and can be extended with customized constraints.In addition,by introducing a smart optimal direction estimation,the labeling speed and accuracy of FCBL are significantly improved.Experiments with a large range of real data gained from industrial factories demonstrate the stability and millisecond-level speed of FCBL.The proposed method has been integrated into a shipbuilding CAD system,and plays a very important role in ship parts labeling process.
基金supported by the National Natural Science Foundation of China (Grant No. 30870760)Ministry of Education of China (Grant No. 20101108110004)the Key Foundation of Beijing Municipal Commission of Education (Grant No. KZ201010028029)
文摘Prospective memory (PM) refers to memory for future intentions.Difference due to memory (Dm effect) is the difference in neural activity related to stimuli that were subsequently remembered or forgotten.Using event-related potentials (ERPs),the present study investigated the Dm effect for PM using a subsequent task-switching paradigm.The results showed that a Dm effect of ERP P150 was more positive-going for later PM hit trials than for later PM forgotten trials during 100–200 ms.This Dm effect may reflect the process for the production of future intention or the process for attention.Consistent with previously reported Dm effects of other types of memory,we found that the fbN2 (250–280 ms) and late positivity component (400–700 ms) were stronger in later PM hit trials than in forgotten trials.The fbN2 was evoked by Chinese characters.The late positivity component was related to the precise encoding process.In conclusion,because of the early P150,PM encoding appears to be somewhat different from previously identified Dm effects.However,further research is needed.Our findings reveal that Dm effects of PM share similar characteristics with known Dm effects of other types of episodic memory after the very early stage of neural processing.